B.N.M. Institute of Technology

An Autonomous Institution under VTU, Approved by AICTE

Department of Mathematics

Syllabus

	Synabus					
~ ~ ~	Semester:					
	Fourier Series, Transforms		-			
Course	Code: 22MAC131 (Comm	on to ECE, EE	E & ME)			
L:T:P:J 2:2:0:0 CIA : 50						
Credits:	03 SEA : 50					
Hours:	40	SEA Duration	: 031	Hours		
	s: The students will be able to e transform, Fourier series, Fo ious fields of engineering.					
Module-1: C	Curve fitting & Statistica	al methods		No. of hours	Blooms cognitive Levels	
Curve Fitting: Curve fitting form: $y = ax+b$, $y = ax^2 + bx$ Statistical methods: Introd Karl Pearson's coefficient of	field that require curve fitting g by the method of least squar + c and y = ax^b . uction to Moments, Skewnes correlation and lines of regress onent: Problems on curve fittin	res-fitting the cur ss, Kurtosis and sion.	ves of the problems.	L: 04 T: 04	Apply	
	lule-2: Laplace Transfo	-				
Examples from Engineering field that require Laplace transforms. Transformation for time domain to frequency domain. Definition and Laplace transforms of elementary functions (statements only). Laplace transform of $e^{at} f(t)$, $t^n f(t)$, $\frac{f(t)}{t}$, $\int_0^t f(t) dt$ and $f^n(t)$ (without proof). Laplace transforms of Periodic functions, unit-step function and unit impulse function. Experiential Learning component: Finding the Laplace transforms of a function.					Apply	
	-3: Inverse Laplace Tran					
<i>Examples from Engineering</i> Definition and problems. If (without proof). Solution of equations. Applications to eng	<i>field that require inverse Lap</i> nverse Laplace transform u linear differential equations at	<i>lace transforms.</i> using convolution nd simultaneous of	theorem		Apply	
· · · ·						
Module-4: Fourier SeriesExamples from Engineering field that require Fourier series.Periodic functions, Introduction to Fourier Series, Dirichlet's condition. Fourierseries of periodic functions with period 2π and arbitrary period. Half range Fouriersine and cosine series. Practical harmonic analysis over the interval (0, 2l).Experiential Learning component: Finding the Fourier series.					Apply	
Module-5: Fo	ourier Transforms & Z ·	Transforms				
Fourier Transforms: Four cosine transforms. Inverse Fo Z-Transforms: Introduction properties (without proof). In	eld that require Fourier Transfo ier transform and properties-p urier transforms. to Z-transform, Z-transform itial value and final value theo onent: Finding the Fourier Tr	oroblems, Fourier of standard fund prems, problems.	sine and ctions and	L:04 T:04	Apply	

Course Outcomes: After completing the course, the students will be able to

- CO 1: Make use of correlation and regression analysis to fit a suitable mathematical model for the statistical data.
- CO 2: Use Laplace transform to find the transformation for time domain to frequency domain
- CO 3: Use inverse Laplace transform in solving differential equations arising in network analysis, control system and other fields of engineering
- CO 4: Demonstrate Fourier series to study the behavior of periodic functions and their applications in system communications, digital signal processing and field theory.
- CO 5: Make use of Fourier transform and Z-transform to illustrate discrete / continuous function arising in wave and heat propagation, signals and systems

Reference Books:

- 1. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10"Ed.(Reprint), 2016.
- 2. B. S. Grewal: "Higher Engineering Mathematics", Khanna Publishers, 44th Ed., 2017.
- 3. H. K. Dass, "Advanced Engineering Mathematics" S. Chand publication.
- 4. C. Ray Wylie, Louis C. Barrett : "Advanced Engineering Mathematics", 6" Edition, 2. McGraw-Hill Book Co., New York, 1995.
- 5. James Stewart : "Calculus —Early Transcendentals", Cengage Learning India Private Ltd., 2017.
- 6. B.V. Ramana: "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill, 2010.
- 7. Srimanta Pal & Subodh C Bhunia: "Engineering Mathematics", Oxford University Press, 3 Reprint, 2016.
- 8. Gupta C. B., Singh S. R. and Mukesh Kumar: "Engineering Mathematics for Semester I & II", Mc-Graw Hill Education (India) Pvt. Ltd., 2015.

Web links and Video Lectures:

- 1. https://youtu.be/BsVtMnp3vks
- 2. https://youtu.be/Nz4WB8-gNBg
- 3. https://youtu.be/6MXMDrs6ZmA
- 4. https://youtu.be/r18Gi8lSkfM
- 5. https://youtu.be/cy_KI_FiS7I
- 6. https://youtu.be/sMYtHaSIXbU

Assessment Process (for both CIA and SEA)

Professional Core Course (PCC)

110			C)			
Course with Credits	Evaluation Type	Maximum Marks	Minimum Passing Marks	Evaluation details		
	Total CIA theory + Practical	50	20			
	CIA-IA Tests	25	10	Average of two Internal Assessment tests each of 50 marks, scale down the marks scored to 25 marks.		
PCC 3 Credits	CIA-CCAs 25		10	 (i) Practical activities / problems solving exercises -15 marks. (ii) Average of two Assignments each of 10 marks, scale down the marks scored to 10 marks. 		
e creatio	Total CIA theory	50	20			
	SEA	50	20	SEA exam is a theory exam, conducted for 100 marks, scaled down to 50 marks		
	CIA+SEA	100	40			
	The maximum marks to be secured in CIA to appear for SEA shall be 10(40% of maximum security marks-25) in theory component and 10(40% of maximum marks-25) in CIA-CO					
	experiential learning	component	of the PCC sha	ll be for CIA only, However, In SEA, the		
	questions from the experiential learning shall be included in their respective module only.					

B.N.M. Institute of Technology

An Autonomous Institution under VTU

Dept. of Electronics and Communication Engineering Choice Based Credit System (CBCS and Outcome Based Education (OBE))

	Semester: III					
Course Name: Network A	nalysis	Course Code	:22ECE132			
L: T: P: J	CIA Mark	s: 50				
Credits:		SEA Marks: 50				
Hours/Week (Total)		t ion: 03 Hour				
Pre-Requisites: Basic Elec	ctrical Concepts, Mathematical Preliminaries					
Course Learning Objectiv	ves: This course will enable students to:					
1 Understand the basic i	network concepts, source transformation, me	sh analysis, r	odal analysis			
in analyzing the electr	ical circuits.					
2 Gain the knowledge o	f various Network Theorems in analyzing the	e electrical ci	rcuits.			
3 Introduce the behavior	r of networks subjected to transient condition	IS.				
4 Use the applications o	f Laplace transforms to solve electrical circu	its.				
	k parameters like Z, Y, h and T and their inter	er-relationshi	ps. Also, stu			
the series and parallel	resonance.					
		No. of	Blooms			
Aodule-1: Basic Concepts		Hours	Cognitive			
iouure 11 Dusie Concepts			Levels/CO			
			Mapping			
1	ication of Electrical Networks, Source		Apply			
	Node analysis with linearly dependent and	1 8	CO1			
independent sources for DO	C and AC networks.					
Module-2: Network Theo	orems					
	hevenin's and Norton's theorems, Maximun		Apply			
Power transfer theorem,	Millman's Theorem. (Applicable only for	r 8	CO2			
Independent sources only)						
	vior and Initial Conditions					
	onents under switching conditions and their		Apply			
representations, evaluation	of initial and final conditions in RL, RC and	¹ 8	CO3			
RLC circuits for DC excita	tions.					
Iodule–4: Laplace Trans	form and Its Applications					
Definition of Laplace tra	nsform, Laplace transform of Step, Ramp	,				
Impulse functions, Initial a	nd Final value theorem, solution of networks	5	Apply			
using Laplace transform,	waveform Synthesis, solution of simple RL	, 8	CO4			
	DC excitations using Laplace transforms.					
Module–5: Two Port Net	work Parameters					
	ransmission parameters, modeling with these	e				
	ysis using of two port networks, Relationship		Apply			
between Parameters.		0	CO5			
	callel resonance, frequency response of series	_	COS			

Course Outcomes: After completing the course, the students will be able to Apply the concepts of source transformation, mesh analysis, and node analysis to 22ECE132.1 solve and analyze the electrical circuits. Apply network theorems such as Superposition, Thevenin's, Norton's, Maximum 22ECE132.2 Power Transfer Theorem, and Millman's Theorem to solve and analyze the various electrical networks. Evaluate the initial and final conditions in passive circuits and apply them for the 22ECE132.3 RL, RC, and RLC electrical networks. 22ECE132.4 Apply and analyze the various electrical networks using Laplace transform. Solve the given network using specified two port network parameters. Also, apply 22ECE132.5 and analyze the concept of series and parallel resonance for RLC networks. 22ECE132.6 Apply and analyze the various applications of electrical networks.

Reference Books

- 1. Network Analysis, M.E. Van Valkenberg, Prentice Hall of India, 3rd Edition, 2010.
- 2. Networks and Systems, Roy Choudhury, 2nd Edition, New Age International Publications, 2013.
- 3. Engineering Circuit Analysis, Hayt, Kemmerly and Durbin, 7th Edition, Tata McGraw-Hill Education, 2010.
- Network Analysis and Synthesis, Ravish R. Singh, 2nd Edition, Tata McGraw-Hill Education, 2013.
- 5. Circuit Theory (Analysis and Synthesis), A Chakrabarti, Dhanpat Rai and Co, 2013.
- 6. Circuits, A. Bruce Carlson, 2nd Edition, Thomson Publishers, 2009.

I Professional Core Course (PCC)

PCC	CIA	SEA		CIA (50)		CIA (50)		SEA Conduction: 100 M
ree	CIA	SLA		Ι	II	Reduced to: 50 M		
J			Written	50	50			
Conduction			Test	Average of two tests – 25 Marks 15 10		Five questions with each of 20 marks (with internal choice).		
npu	50	50	Assignment			Student should answer one full question from each module		
Į0			AAT					
				Total	– 50 marks	Total – 50 marks		

i) CIA: 50%

IA Test: 2 IA tests - Each of 50 Marks	Average of 2 tests – scaled down to 25 M
Assignment – Two assignments – one for 10 marks and another for 5 marks	15 Marks
Additional Assessment Tools (AAT) – Oral /Online Quizzes,	10 Marks

Presentations, Group discussions, Case studies, Term Paper, Open ended experiments, Mini industrial/social/rural Projects,	
Two-minute video on latest topic, Short MOOC courses,	
Practical Orientation on Design thinking, creativity &	
Innovation, Participatory & Industry integrated learning, Practical activities, Problem solving exercises, Participation in	
seminars/academic events/symposia and any other activity	
Total	50 Marks

ii) **SEA : 50%**

Theory Exam	5 questions to answer each of 20 Marks 2 questions from each module with internal choice Student should answer one full question from each module	20 M x 5 = 100 M reduced to 50 M
	Total	50 Marks

B.N.N	M. Institute of	l Techn	ology	:		
	onomous Institution					
	onics and Communicati	0	U/			
Choice Based Credit Sy	stem (CBCS and Outco Semester: III	ome Based Ed	lucation	(OBE)		
Course Name: Data Structure		Cours	se Code:	22ECE133		
L: T:P: J	2:0:2:0	CIE Marks:	50			
Credits:	-	SEE Marks: SEE Duratio				
Hours/Week (Total) Pre-Requisites: Basic C Program		SEE Durauo	II: 03 H0	urs		
Course Learning Objectives: T		e to				
1 Understand the role of d	ata structures and time co	omplexity ana				
-	tructures arrays and linke		-	-		
3 Illustrate the concept of performed.	f linear data structures st	acks and que	ues with	the operations		
4 Illustrate the working applications	of non-linear tree data	structure, ope	erations p	performed and		
Demonstrate the non-linear data structure – graphs and their applications along with sorting and searching algorithms. Also, apply the above data structures suitably to solve practical problems.						
Module-1: INTRODUCTION	TO DATA STRUCT	URES &		Bloom's		
ALGORITHMS		No. of	Taxonomy			
		Hrs	Levels/CO			
Introduction and Overview:	Introduction, Basic Terr	ninology.		Mapping		
Elementary Data Organization,	Data Structures, Data	Structure				
Operations, Abstract Data Type Queue.	es (ADT), ADT of Arra	ay, Stack,	8	Understand CO1		
Algorithms: Complexity, Tim	e-Space Trade off, A	lgorithms	0	COI		
Notation, Complexity of Algorith	-	-				
for complexity of algorithms.	A. I. INIE A D. D.A.T.A. OTT					
wiodule-	-2: LINEAR DATA ST	KUCIUKES				
Arrays: Introduction, Linear A						
Arrays in memory, Traversin Deleting, Sorting; Bubble Sort, T		0		Apply		
	-		8	CO2		
Linked Lists: Introduction, link	-					
lists in memory, traversing a linked list, searching linked list, memory allocation, garbage collection.						
	R DATA STRUCTURE	S-STACKS &	& OUEU	ES		
Stacks: Introduction, Stacks. Arr	ay representation of Stac	KS, IIIIKCU I				
Stacks : Introduction, Stacks, Arr representation of Stacks, Arithme	etic expressions; Postfix a		C	Apply		
	etic expressions; Postfix a		8	Apply CO3		
representation of Stacks, Arithme	etic expressions; Postfix a ion of stacks.	and prefix	8			

Trees: Introduction, Binary trees, representing binary trees in memory, traversing binary trees, binary search trees, searching and inserting in binary search trees, deleting in a binary search tree, AVL search trees.	8	Apply CO4			
Module-5: GRAPHS, SORTING & SEARCHING					
Graphs and their applications: Introduction, Graph theory Terminology, linked representation of a graph, operation on graphs, traversing of graphs (Breadth-First Search, Depth first search) Sorting & Searching: Introduction, sorting, insertion sort, selection sort, merge sort, searching and data modification.	8	Apply CO5			

List of Programs

Using C compiler, demonstrate the concepts using following programs:

- 1. Write a C program to Insert an element in an array and delete an element in the same array
- 2. Write a C program to sort the array elements using selection sort
- 3. Write a C program to sort the array elements using bubble sort
- 4. Write a C program to create of 'n' nodes in singly linked list and display them
- 5. Write a C program to insert a node at the middle of linked list
- 6. Write a C program to delete a node in linked list
- 7. Write a C program to implement the stack in array.
- 8. Write a C program to Reverse String using STACK
- 9. Write a C program to implement the queue in array
- 10. Write a C program to search the number/node in a tree
- 11. Write a C program to implement Graph

Course Outc	Course Outcomes: After completing the course, the students will be able to					
22ECE133.1	Gain knowledge on the importance of data structures, algorithms and					
22ECE155.1	time complexity computations.					
22ECE133.2	Apply linear data structures to analyse and obtain solutions					
22ECE133.3	Apply non-linear tree data structure to analyse and obtain solutions					
22ECE133.4	Apply non-linear graph data structure to analyse and obtain solutions					
22ECE133.5	Apply the concepts of sorting and searching to problem solving					
22ECE133.6	Analyse real time practical problems and apply appropriate data					
22ECE155.0	structures to obtain efficient solutions					

Reference Books

- Data Structures, Seymour Lipschutz, Tata McGraw Hill Education, Revised 1st Edition, 2008.
- 2. Fundamentals of Data structures in C, Horowitz, Sahni & S.Anderson-Freed, University Press, Second edition, 2008.
- 3. Introduction to Algorithms, Thomas H. Cormen, C.E. Leiserson, R L.Rivest and C. Stein, Third edition, MIT Press, 2009
- 4. Data structure and program design in C, R.L. Kruse, B.P. Leary, C.L. Tondo, PHI, 2009(Fourth Impression)
- 5. Data Structures, Tannenbaum, PHI, 2007(Fifth Impression)

- 6. An introduction to Data Structures with Applications, Jean Paul Tremblay, Paul G. Sorenson, Second Edition, Tata McGraw-Hill,1991.
- 7. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, Second Edition, Pearson Education, 1996.

II Professional Core Integrated Lab (PCI) (Programming courses)

PCI	CIA	SEA		CIA (50)			EA ion: 100 M l to: 50 M
				Ι	II	PART A	PART B
n				30	30		
ctio			IA Test	Average of two	o tests – 30 M		
Conduction	50	50	Continuous Assessment	Weekly Assessment -20 marks		30 Marks	70 Marks
Ŭ				,	Total – 50 Marks	Tota	al – 50 Marks

i) CIA: 50%

IA Test: 2 IA tests - each of 30 Marks	Average of 2 tests – 30 M		
Practical			
Lab record – 10 Marks	20 Marks		
Performance – 05 Marks	20 Marks		
Viva – 05 Marks			
	Total 50 Marks		

ii) SEA : 50% Question Paper:

Theory part	5 questions to answer each of 6 Marks 2 questions from each module with internal choice Student should answer one full question from each module	6 M x 5 = 30 Marks
Execution part	Write up - 20 Marks Conduction - 40 Marks Viva-Voce - 10 Marks	70 Marks
	Total	100 Marks Reduced to 50 M

Note:

➢ No Assignment and AAT

Dept. of Electronics and Communication Engineering Choice Based Credit System (CBCS and Outcome Based Education (OBE)

	Semeste	er: III				
Course Name: Analog Ele	ctronics Circuits	Course	Code: 22EC	CE134		
L: T: P: J	3: 0:	2 :0	CIA Marks	s: 50		
Credits: 4 S				SEA Marks: 50		
Hours/Week (Total) 5 SEA Duration: 03 H						
Pre-Requisites: Physics an	nd Electronics fundan	nentals				
Course Learning Objectiv	The students will	ha ahla ta				
Course Learning Objective1Explain various BJT patient						
2 Design and demonstrate						
3 Explain various types o			Camplifiers			
- Fri in in infinit			ampimers			
5 Design op-amp for lines	ar and non-innear applic	auons				
Module-1: BJT Biasing, Sn	nall Signal Operation	and Modelling	No. of Hours	Blooms Cognitive Levels		
Teaching component: Bia	sing in BJT amplifier	circuits: The Classica	ıl			
Discrete circuit bias (Voltage	e-divider bias), Biasing	using a collector to bas	e			
feedback resistor.				Apply		
Small signal operation and M	Iodels: Collector curren	t and transconductance	e, 10	Apply CO1		
Base current and input resi	stance, Emitter curren	t and input resistance	e,	COI		
voltage gain, The hybrid Π r	nodel, and The T mode	1.				
Module-2: : MOSFETs Bi	asing, Small signal on	eration and Modellin	g			
MOSFETs: Biasing in MOS						
Drain to Gate feedback resis			Δ	Apply		
DC bias point, signal current	0 1	6		CO2		
circuit models, transconduct				001		
Module-3: MOSFET Amp						
MOSFET Amplifier configu		ations characterizing				
amplifiers, CS amplifier with	-	-				
MOSFET internal capacitat				Apply		
capacitive effect, Junction ca	• •		10	CO3		
Frequency response of the C		-				
frequency response, Low fre	-	requency bunds, ingh				
Module-4: Feedback Amp		nd Power Amplifiers				
Feedback Amplifier: Gener						
feedback, The Four Basic F		1 0				
series, shunt-shunt, and shun	1 0 ,	,		Apply		
Output Stages and Power Ar	1	•	10 It	CO4		
stages, Class A output stage,	-	-		04		
Power Dissipation, Power C			` ,			
Module-5: Op-Amp Circ						
Teaching component: Instr			r			
and R-2R ladder, ADC- Suc	± ·	Ũ		Annly		
wave rectifier, Active Fi				Apply CO5		
Butterworth filters, Band-pa		1 0 1	U			
Dana worm micro, Dana-Pa	so micro, Dana Icjeel II	1.010.	1			

Lab Expe	riments (Lab sessions + 1 Lab Test)
Sl. No	Experiments
1	Design and set up the BJT common emitter voltage amplifier without feedback and determine the gain-bandwidth product, input and output impedances.
2	Design and set up the FET common source voltage amplifier without feedback and determine the gain-bandwidth product, input, and output impedances.
3	Experiment to determine the Power efficiency of class C amplifier
4	Design Second Order Butterworth low pass filter using opamp
5	Design of Op- Amp as a comparator circuit
6	R-2R DAC
7	Simulation Experiment: Narrow Band-pass Filter
8	Simulation Experiment: Active second-order Butterworth high pass filters
9	Simulation Experiment: Monostable & Astable Multivibrator using 555 Timer
10	Simulation Experiment: Narrow band-reject filter

Course Outco	mes: After completing the course, the students will be able to
22ECE134.1	Design and analyze biasing circuits for BJTs amplifier circuits.
22ECE134.2	Design and analyze biasing circuits for FET amplifier circuits
	Design and analyze FET common source amplifiers with different circuit configurations and biasing conditions.
22ECE134.4	Understand the feedback topologies and approximations in the design of amplifiers
22ECE134.5	Design of circuits using linear ICs for wide range applications such as ADC, DAC, filters and timers.
22ECE134.6	Design real-life application based on discrete Analog and linear IC circuits

Reference Books

- Microelectronic Circuits, Theory and Applications, Adel S Sedra, Kenneth C Smith, 6th Edition, Oxford, 2015. ISBN:978-0-19-808913-1
- Op-Amps and Linear Integrated Circuits, Ramakant A Gayakwad, 4th Edition, Pearson Education, 2018. ISBN: 978-93-325-4991-3.
- 3. Integrated Electronics: Analog and Digital Circuits and Systems, Jacob Millman, Christos C. Halkias, McGraw-Hill, 2015.
- 4. Electronic Devices and Circuit, Boylestad & Nashelsky, Eleventh Edition, Pearson, January 2015
- 5. Electronic Principles, Albert Malvino, David J Bates, 7th Edition, McGraw Hill Education (India) Private Limited, 2017, ISBN:978-0-07-063424-4.

II b. Professional Core with Integrated Lab (PCI) – Course with Lab

				CIA (50)		SEA				
PCI	CIA	CIA SEA		I	II	Conduction: 100 M				
				1	11	Reduced to: 50 M				
			Written	50	50					
			Test	Average of two	tests – 50 marks	Five questions with each				
ų		50 50		Test	scaled dowr	n to 15 marks	of 20 marks (with			
Conduction	50			Assignment	Average of 2 As	signments – 10M	internal choice). Student should answer one full			
lpu	50			Practical IA tes	30 30	50 50	30	Weekly Assessm	ent – 10 Marks	question from each
10					Practical	IA test – 15 Marl		module		
					· ·	nducted for 50 M	module			
					and scaled down	to 15M)				
				I	Total – 50 Marks	Total – 50 Marks				

i) CIA: 50%

	IA Test (Theory): 2 IA tests - each of 50 Marks –	
Theory		Average of 2 tests scaled down to 15 Marks	25 Marks
	Assignment :	2 Assignments – each of 10 marks	
Lab	Weekly Assessm Practical test (1)	25 Marks	
	•	Total	Marks

ii) SEA : 50% Question Paper:

v	5 questions to answer, each of 20 Marks questions from each module with internal choice udent should answer one full question from each module	20 M x 5 = 100 M Reduced to 50 M
	Total	50 Marks

B.N.M. Institute of Technology

An Autonomous Institution under VTU

Dept. of Electronics and Communication Engineering Choice Based Credit System (CBCS and Outcome Based Education (OBE)

	<u> 20500 010</u>	Semester: III			
Course Name:	Digital Syste	em Design Using Verilog	Course	Code: 22EC	CE135
L: T: P: J 3: 0: 2: 0				CIA Mark	s: 50
Credits:	SEA Mark	SEA Marks: 50			
Hours/Week (3 Hours/ Week (40 Hours))	SEA Durat	tion: 03 Hours
Pre-Requisites	s: Digital Ciro	cuits			
		es: The students will be able to			
techniques		ression using K-map techniques and Q	uine-McC	luskey minin	nization
		combinational logic circuits.			
		ysis of sequential logic circuits			
•	<u> </u>	using Verilog HDL-data flow models.			
5 Design of a	digital systems	using Verilog HDL behavioral and str	uctural mo	odels.	
Module-1: Prin	ciples of Cor	nbinational Logic		No. of Hours	Blooms Cognitive Levels/CO Mapping
equations from t using Don't can McCluskey Min Terms.	truth tables, Ka re, Simplifying nimization Te	ogic, Canonical forms, Generation of urnaugh maps- up to 4 variables, Karna g Maxterm equation up to 4 variable chnique. Quine-McCluskey using D	augh maps es. Quine-	8	Apply CO1
Adders and Sub	tractors: Binar	h MSI Components y Parallel Adder and Subtractors, Rip Adder Comparators, Decoders,	· • ·		Apply CO2
Module-3: Flip	-Flops and it	s Applications			
Latches, SR Lat Slave Flip-flops triggered flip flo Synchronous Bi clocked JK and	8	Apply CO3			
Module-4: Fini	te State Mac	hine and Verilog Data flow descri	iption		
module, Operato	ors, Data Types	struction of State Diagram, Structure of s, Styles of Description. Highlights of low description.	0		Apply CO4
		oral and Structural description			
Statements, Ve	rilog Behavio ription, Orga	nent Statement, Sequential Stateme ral Description of Multiplexers Hig nization of structural description, er.	ghlights o	of	Apply CO5

Sl.No.	Lab Experiments						
1	Simplify the given 3/4 variable Boolean expressions. and simulate the design using						
	Verilog dataflow description.						
2	Design a Full Adder using two half adders and simulate using verilog structural flow						
	Description						
3	Realize 32-bit ALU using Verilog Behavioral description.						
4	Realize using Verilog Behavioral description: 8:1 mux, 8:3 Priority encoder						
5	Realize using Verilog Behavioral description: 3:8 decoder, 2-bit Comparator						
6	Realize using Verilog Behavioral description: Flip-flops: a) JK b) SR c) T d) D a						
	verify the design using FPGA board.						
7	Design 4 bit Binary and BCD counters with synchronous and asynchronous rese						
	using Verilog Behavioral description and verify the design using FPGA board						
8	Design 8-bit shift register for shift left and right operation using Verilog behavioral						
	Description						
9	Develop a Verilog Program to interface a Stepper motor to the FPGA and rotate the						
	motor in the specified direction						
10	Interface DAC to generate square and triangular waveform using Verilog program						
	and implement into the FPGA board						

Course Outcomes: After completing the course, the students will be able to						
22ECE135.1	135.1 Simplify Boolean functions using K-map and Quine-McCluskey minimization technique.					
22ECE135.2	Analyze and design for combinational logic circuits.					
22ECE135.3	Analyze the concepts of Flip Flops (SR, D, T and JK) and to design the synchronous sequential circuits					
22ECE135.4	Design of combinational and sequential circuits using Verilog dataflow descriptions.					
22ECE135.5	Design of combinational and sequential circuits using Verilog behavioral and structural descriptions.					
22ECE135.6	Design the applications of combinational and sequential circuits					

Reference Books

- 1. Digital Logic Applications and Design, John M Yarbrough, Thomson Learning, 2001
- 2. Digital Principles and Design, Donald D Givone, McGraw Hill, 2002
- 3. HDL Programming VHDL and Verilog, Nazeih M Botros, press, 2009
- 4. Fundamentals of logic design, Charles H Roth Jr., Cengage Learning
- 5. Verilog HDL-a guide to digital design and synthesis, Sameer Palnitkar2nd edition, Pearson Edition 2003.

Marks Distribution for Assessment:

		CIA (50)			SEA			
PCI	CI CIA SEA			Ι	Π	Conduction: 100 M Reduced to: 50 M		
u	Conduction 20	Writte	Writton	50	50	Five questions with each		
Stio				Test	Average of two	tests – 50 marks	of 20 marks (with	
que		50	50	50	50 50	Test	scaled down	to 15 marks
on				Assignment	Λ yorago of $2 \Lambda_{\rm c}$	aignmonts 10M	should answer one full	
0	C		Assignment			Average of 2 Assignments – 10M		question from each

	Practical	Weekly Assessment – 10 Marks IA test – 15 Marks (IA test to be conducted for 50 M and scaled down to 15M)	module
		Total – 50 Marks	Total – 50 Marks

i) CIA: 50%

	IA Test (Theory): 2 IA tests - each of 50 Marks –	
Theory		Average of 2 tests scaled down to 15 Marks	25 Marks
	Assignment :	2 Assignments – each of 10 marks	
Lab	Weekly Assessm Practical test (1)		25 Marks
		Total	50 Marks

ii) **SEA : 50%**

Question Paper:

č	questions from each module with internal choice udent should answer one full question from each module Total	20 M x 5 = 100 M Reduced to 50 M 50 Marks
Theory Exam	5 questions to answer, each of 20 Marks questions from each module with internal choice	20 M x 5 = 100 M

-	00	
dit System (CBCS and Outcome Based Ed	-	OBE)
ramming on Raspberry PI	Course C	ode: 22ECE136
0:0:2:2	CIA Mar	ks: 50
2	SEA Mar	ks: 50
4	SEA Dura	ation: 03 Hours
and C++ language, Students should be familia	rized about	Python
ntics in Python		
unctions in Python		
ictionaries in Python		
Sensors with Raspberry Pi		
ay devices with Raspberry 11		
Topics	No. of Hours	Blooms Cognitive Levels/CO Mapping
d Exception Handling in Python o find the best of two test average marks out od from the user ram to check whether a given number is	5	Understand CO1
Manipulation, String methods m to perform the following code conversions that accepts a sentence and find the following gits	5	Apply CO2
d Dictionary in Python to implement insertion sort and merge sort ert roman numbers in to integer values using	5	Apply CO3 Apply
	Autonomous Institution under VTU Electronics and Communication Engineed dit System (CBCS and Outcome Based Ed Semester: III ramming on Raspberry PI 0:0:2:2 2 4 and C++ language, Students should be familia environment ses: The students will be able to ntics in Python 'unctions in Python 'ictionaries in Python 'Sensors with Raspberry Pi ay devices with Raspberry Pi ay devices with Raspberry Pi ay devices with Raspberry Pi count of functions, Poperators, Flow of find the best of two test average marks out ed from the user arm to check whether a given number is count the number of occurrences of each ation of functions, Passing parameters and Manipulation, String methods m to perform the following code conversions	amming on Raspberry PI Course C 0:0:2:2 CIA Mar 2 SEA Mar 4 SEA Dur and C++ language, Students should be familiarized about environment SEA Dur cs: The students will be able to ntics in Python unctions in Python ictionaries in Python 'sensors with Raspberry Pi ay devices with Raspberry Pi ay devices with Raspberry Pi No. of Hours entals, Data types, Operators, Flow d Exception Handling in Python 5 of find the best of two test average marks out ed from the user 5 count the number of occurrences of each 5 ation of functions, Passing parameters and Manipulation, String methods m to perform the following code conversions 5 that accepts a sentence and find the following. gits 5 that accepts a sentence and find the following. gits 5 that accepts a sentence and find the following. gits 5 that accepts a sentence and find the following. gits 5 tert roman numbers in to integer values using 5

Programs:		CO4
1) Write a python program to accept a file name from the user and		
perform the following operations.		
a) Display the first N line of the file		
b) Find the frequency of occurrence of the word accepted from the user		
in the file		
2) Develop a python program to demonstrate Regular Expression.		
Module 5: Introduction to Raspberry Pi architecture, Pin details,		
Introduction to Interfacing of sensors and output devices		
Programs:		
1) Demonstrate the interfacing of IR/PIR sensors to Raspberry Pi.	5	Apply
2) Demonstrate the interfacing of LED to Raspberry Pi.	5	CO5
3) Demonstrate the interfacing of Seven Segment Display device to		
Raspberry Pi.		
4) Demonstrate the interfacing of ultrasonic sensor to Raspberry Pi.		

List of Projects:

- 1. Develop a Python project to generate QR Code
- 2. Develop a Python project for countdown timer that takes the number of seconds as input, and countdowns second by second until it displays a message "TimeOut"
- 3. Develop Smart parking system using Python
- 4. Automated toll gate system
- 5. Simple Calculator
- 6. Quiz Application
- 7. Generating a strong Password
- 8. Digital Clock
- 9. Creating a Desktop Notification Application
- 10. Sticky notes in Python

Course Outco	omes: After completing the course, the students will be able to
22ECE136.1	Interpret syntax and semantics using flow control statements in Python
22ECE136.2	Demonstrate proficiency in handling Python strings
22ECE136.3	Construct Python program using lists and dictionaries
22ECE136.4	Develop Python program using file system and Regular Expression
22ECE136.5	Apply Python programming techniques to interface sensors and display devices with Raspberry Pi
22ECE136.6	Implement a Python Project using Raspberry Pi concepts

Reference Books

- **1.** Automate the Boring Stuff with Python, Al Sweigart, 2nd Edition 2019, No Starch Press, ISBN-13 978-1593279929.
- **2.** Python Programming Using Problem Solving Approach, Reema Thareja 2nd Edition 2023, Oxford University Press, ISBN-13 978-9354973765.
- **3.** Think Python: How to Think Like a Computer Scientist, Allen B. Downey, 2nd Edition 2015, Green Tea Press, ISBN-13 978-1491939369
- **4.** Internet of Things Programming Projects: Build modern IoT solutions with the Raspberry Pi 3 and Python, Colin Dow, 1st Edition 2018, Packt Publishing Limited, ISBN-13 978-1789134803

Marks Distribution for Assessment:

PBL	CIA	SEA		CIA (50)		SEA Conduction: 100 M Reduced to: 50 M	
				I IA	II IA		
on		50 50	Theory	25	25		
Conduction	50		50 50 Practical	Average of 2 tests	s – 25 M	Project Assessed for 100 marks	
nd	50				Weekly	Assessment	reduced to 50 Marks
^o	\tilde{O}				Practical	(Record/Project)	– 10 Marks
				Lab IA test	– 15 Marks		
				1	Cotal – 50 Marks	Total – 50 Marks	

i) CIA: 50%

Theory - 2 IA tests - Each of 25 Marks	25 Marks
Practical Weekly Assessment - Lab record/Project – 10 Marks	25 Marks
Lab IA test – 15 Marks	
Tota	al 50 Marks

ii) SEA : 50%

	Presentation & Demonstration - 50 Marks Viva-Voce – 15 Marks	Total	Reduced to 50 Marks
Project	Write up – 10 Marks Project report – 25 Marks		100 Marks

B.N.M. Institute of Technology

An Autonomous Institution under VTU

		Semester: III			
	COU	RSE: CONSTITUTION O PROFESSIONAL ETH		ND	
Cours	se Code: 22CIP137	L:T:P:J: 1:0:0:0		arks: 50	
Cred	its:	1	SEA M	arks: 50	
Hour	s:	15 hrs	SEA Du	ration: 2Hrs	
Cours	se Learning Objectives	: The students will be able to)		
1	*	olitical codes, structure, procedu rights, directive principles, and			lian governmen
2	know the Indian top civil	service positions and the exams	conducted b	by UPSC and SP	SC for the same
3	Understand engineering e responsibilities towards s	ethics and their responsibilities; is society.	identify their	individual roles	and ethical
MOD	ULE 1: Introduction to 1	Indian Constitution		RBT	Hrs
Making Salient Restrict	of the Constitution, Role features of the Constitut	n, Introduction to Indian Cons e of Constituent Assembly, P ion of India, Fundamental Ri rent complex situations, Directives.	reamble and ghts and its	1,2,3	3
MOD Gover	•	ernment, Central Governn	nent, State	RBT	Hrs
System Central Parliam officers House Adjourn House, Basic d (Compo	of Government-Parliament Government-Basic details, ent- LS and RS (Compos of Parliament and their fun and Leader of the Opposit nment, Adjournment Sine Language in Parliament, Jo etails, Powers and Function	ary System, Federal System. Powers and Functions of Unio ition, Duration, Membership an ctions). Leaders in Parliament (1 tion). Sessions of Parliament (4 Die, Prorogation, Dissolution). bint sitting of two Houses. State (4 ns of State Executive. State Legi hip and Presiding officers of Pa	nd Presiding Leader of the Summoning, Quorum of Government- islature	1,2,3	3
MOD	ULE 3: Judiciary, Amen	dments and Emergency Pro	ovisions	RBT	Hrs
Constitu	Supreme Court, High Court, Judicial Review, Judicial Activism. Methods in Constitutional Amendments (How and Why). Types of Emergencies and its Consequences, Recent Amendments to the Constitution.			1,2,3	3
MODULE 4: Elections, Constitutional and Non Constitutional Bodies			RBT	Hrs	
Constitu Commi Counci	ssion, State Public Servi l. onstitutional Bodies- Central	India, Electoral Process. Commission, Union Pub ce Commission, Goods and Information Commission, State	Service Tax	1,2,3	3

MODULE 5: Professional Ethics	RBT	Hrs
Scope & Aims of Engineering & Professional Ethics, Positive and Negative Faces of Engineering Ethics, Responsibilities in Engineering, the impediments to Responsibility. Trust and Reliability in Engineering, Risks, Safety and liability in Engineering, Clash of Ethics, IPRs (Intellectual Property Rights)		3

Course outcome: On completion of this course, students will be able to,

CO1: Have constitutional knowledge and legal literacy.

CO2: Have knowledge on All India Services and State Civil Services.

CO3: Understand Engineering and Professional Ethics and responsibilities of Engineers.

Reference Books

Suggested Learning Resources:

- **1.Title of the Book Indian Polity** Name of the Author - M Lakshmikanth Name of the Publisher-Mc Graw Hill Education Edition and Year- 2019
- 2. Title of the Book Engineering Ethics Name of the Authors - M. Govindarajan, S.Natarajan, V.S. Senthilkumar Name of the Publisher- Prentice-Hall Edition and Year-2004

3. Durga Das Basu (DD Basu): "Introduction to the Constitution on India", (Students Edition.)

Prentice –Hall EEE, 19th / 20th Edn., (Latest Edition) or 2008.

4. Shubham Singles, Charles E. Haries, and Et al : "Constitution of India and Professional

Ethics" by Cengage Learning India Private Limited, Latest Edition – 2018.

5. M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice – Hall

of IndiaPvt. Ltd. New Delhi, 2004

6. M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.

7. Latest Publications of NHRC - Indian Institute of Human Rights, New Delhi.

Web Links and Video Lectures

www.unacademy.com/lesson/future-perfect-

tense/YQ9NSNQZ https://successesacademy

Question paper pattern for SEA and CIA.

• The SEA question paper will be set for 50 marks and the pattern of the question paper will be objective type (MCQ).

• The CIA question paper will be set for 50 marks and the pattern of the question paper will be objective type (MCQ).

Final Marks = CIA + SEA = 50+50 = 100 Marks

Class Internal Assessment

IA1	Objective type questions 50Marks	Average of 2 IA will be taken
IA2	Objective type questions 50Marks	50Marks
	Total CIA	50 Marks

Semester End Assessment

	Objective type	
Semester end Exam	questions	50 Marks
	50Marks	
	Total SEA	50 Marks

Final Marks = CIA + SEA = 50+50 = 100 Marks

B.N.M. Institute of Technology An Autonomous Institution under VTU

	Semester: III					
		COURSE: Soft Skil	1-1			
Cours	se Code: 22SFT138	L:T:P:J: 0:0:2:0	CIA Marks: 50			
Credi	its:	1	SEA Marks: 50			
Hours:		24 hrs SEA Duration: 2Hrs				
Cours	Course Learning Objectives: The students will be able					
1	To help students understand their strengths and weakness.					
2	To develop analytical and creative ability to solve problems individually or as a team.					
3	3 To make students industry ready through practice of corporate etiquettes.					
4	To enhance public speaking and presentation skills.					

Module	Contents of the Module	Hour	Cos
No.		S	
1	Module-1 Understanding and Managing Self Self-Awareness, Self-Management, Anger Management, Time management, Change management. Vision and goal setting - Diff between vision and goal, smart, stretched goal concept, case studies Knowledge, Skill, Attitude Personality analysis using Big 5 personality test Critical Thinking, Problem solving, Creativity and innovation Integrity, ethics, values	8	1 &2
2	Module -2 Corporate etiquettes and Mannerism Introduction to Etiquette and Mannerism, Personal Etiquette, Grooming etiquettes- professional styling, Body & personality styling, Video Interview Etiquettes, Personal Interview EtiquettesEffective meeting skills. Workplace behavior, Personal interview	6	3
3	Module -3 Public Speaking and presentation skills Introduction to public speaking, making ideas, illustrating and delivering ideas, overcoming fear of public speaking and developing great delivery. Advanced Business presentation skills, PowerPoint presentation, Group discussion	6	4
4	Module -4 Team Work Interpersonal skills, group work vs team work	4	5

Course Outcomes: At the end of the course the student will be able to:

CO1	Understand their strength and weaknesses.
CO2	Develop analytical and creative ability to solve problems.
CO3	Identify themselves as industry ready through the practice of corporate etiquettes.
CO4	Enhance public speaking and presentation skills.
CO5	Build team collaboration by working towards shared goals.

Mapping of Course Outcomes with Programme Outcomes:

COs	PO8	PO9	PO10	PO11
CO1	3	3		
CO2		3		3
CO3	3	3		3
CO4		3	3	
CO5			3	3

MOOC Course:

Communicate with impact - https://www.coursera.org/learn/communicate-with-impact

Leading Diverse Teams - https://www.coursera.org/learn/leading-diverse-teams

Practical component:

- 1. Mock GD and interview may be conducted at the end of the course to check their confidence. Students can prepare their SWOT analysis and present the same.
- 2. The students are to be involved in various activities and games such as Just a Minute or Pick and speak to demonstrate each topic.

<u>Class Internal Assessment – 50 Marks</u>

- 1. Video Assignment -30Marks
- 2. Weekly Assessment -20Marks

Rubrics for evaluation: (TOTAL - 30 Marks)

SL no.	Assessment	COs	Marks
1	Creativity	CO 2	5M
2	Approach and flow	CO 2	5M
3	Time Management (duration of video and deadline)	CO 1	5M
4	Individual presentation in the video	CO 4	5M
5	Report- Brief about the topic and Contribution of team members	CO 5	5M
6	Report- Reflections (learnings from the activity)	CO 2 & CO 5	5M

Semester End Assessment – 50 Marks

PPT	- 10 Marks
Communication (Clarity and English)	- 10 Marks
Body Language	- 10 Marks
Viva (Q and A)	- 10 Marks
Project Report	- 10 Marks

Final Marks = CIA + SEA = 50+50 = 100 Marks

B.N.M. Institute of Technology An Autonomous Institution under VTU, Approved by AICTE

Department of Mathematics

	s Sy	llabus			
		ester: IV			
		Probability and Random Proce	SS		
		(Common to ECE, EEE & ME)			
L:T:P:J	2:2:0:0	CIA: 50			
Credits:	03	SEA: 50			
Hours:	40	SEA Duration: 03 Hours			
Course Learning Obje	ctives: The students will be	able to			
-		ex variables and conformal mappin	g arising in	potential	
	echanics, heat conduction and	d field theory.			
	ledge of probability, joint pr ssing, design engineering and	obability distribution and Random and microwave engineering.	process occ	urring in	
	Module-1: Complex A	nalysis	No. of hours	Blooms cognitive Levels	
· · ·	ring that require complex of	•			
		s, continuity and differentiability.			
		in Cartesian and polar forms.	L: 04	Apply	
function using Milne-Tho		tatement), construction of analytic	T: 04		
		onstruction of analytic functions			
	Conformal Mapping & (
		formal Mapping & Complex			
Integration.	certity man require conj				
e	ntroduction, discussion of t	transformations: $w = e^z$, $w = z^2$,			
$w = z + \frac{1}{z} (z \neq 0)$. Biline			L: 04	Apply	
Z		ation, Cauchy's theorem and	T: 04		
	a. Poles and residues, Residue				
	omponent: Problems on C				
Module-3: Probabi	lity Distributions & Joi	int probability distribution			
		and Joint probability distribution.			
1 1 0	° ' '	ty theory. Discrete and continuous			
•	probability mass/density	functions (definitions only).			
	ential and normal distribution		L: 04		
		tribution for two discrete random	L: 04 T: 04	A]	
variables, expectation, co			1.04	Apply	
1 0	component: Problems on B	inomial, Poisson, Exponential and			
Normal distributions	Module-4: Random Pr	meass			
Examples from Engineering	ng that require random proc				
		hods of description of a random			
	1	godicity, Spectral representation,	τ		
Weiner-Kinchine theorem	, Poisson process, pure birth	h process, birth and death process	L: 04		
	h process with a linear rate.		T: 04	Apply	
• •	component: Problems on P	Poisson process, pure birth process,			
birth and death process					
	-5: Markov Chain & Sa				
	ng that require Markov Chai				
	-	s, Probability vectors, Stochastic	T 04		
		ins, Higher transition probabilities,	L: 04	Apply	
processes.	i Regulai Markov chains	and absorbing states, Markovian	T: 04	-	
		1			

Sampling Theory: Introduction to sampling theory, Testing of hypothesis, level of	
significance, confidence limits, test of significance of mean and difference of means for	
large samples-z-test, test of significance of small samples-Student's t- distribution,	
Goodness of fit-Chi-square test.	
Experiential Learning component: Problems on Markovian processes and, Sampling	
Theory	
Course Outcomes: After completing the course, the students will be able to	
CO1: Use the concepts of analytic function and complex potentials to solve the problems	arising in
electromagnetic field theory.	
CO2: Utilize conformal mapping and complex integral arising in aerofoil theory, fluid flo	W
visualization and image processing.	
CO3: Apply discrete and continuous probability and joint probability distributions in ana	lyzing
the probability models arising in engineering field.	
CO4: Use Markov chain in prediction of future events and demonstrate the validity of tes	ting the
hypothesis.	0
CO5: Use the concepts of random process in dealing with signals in engineering problem	18.
Reference Books:	
1. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition	i(Reprint),
2016.	
2. B. S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 44th Edition, 20	17.
3. S. D. Sharma : "Operations Research", KedarNath Ram Nath & Co. Meerut, 2014.	
4. T. Veerarajan : "Probability, Statistics and Random processes", McGraw Hill Educa	tion (India)
Private Limited, Third edition, Nineteenth reprint 2017.	
5. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics", 6th Edition,	2. McGraw-
Hill Book Co., New York, 1995.	
6. James Stewart : Calculus — Early Transcendental, Cengage Learning India Private L	td., 2017.
7. B. V. Ramana: "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill,	
8. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics", Oxford University	
Reprint, 2016.	·

Web links and Video Lectures:

- 1. https://nptel.ac.in/courses/111106141
- 2. https://www.digimat.in/nptel/courses/video/111107119/L29.html
- 3. https://archive.nptel.ac.in/courses/122/107/122107036/
- 4. https://archive.nptel.ac.in/courses/105/105/105105045/
- 5. https://archive.nptel.ac.in/courses/111/102/111102014/
- 6. https://archive.nptel.ac.in/courses/111/103/111103159/

Assessment Process (for both CIA and SEA) Professional Core Course (PCC)

Course with Credits	Evaluation Type	Maximum Marks	Minimum Passing Marks	Evaluation details	
	Total CIA theory + Practical	50	20		
	CIA-IA Tests	25	10	Average of two Internal Assessment tests each of 50 marks, scale down the marks scored to 25 marks.	
PCC 3 Credits	CIA-CCAs	25	10	 (i) Practical activities / problems solving exercises -15 marks. (ii) Average of two Assignments each of 10 marks, scale down the marks scored to 10 marks. 	
	Total CIA theory	50	20		
	SEA	50	20	SEA exam is a theory exam, conducted for 100 marks, scaled down to 50 marks	
	CIA+SEA	100	40		
	component and 10(40%	ofmaximum marks	-25) in CIA-CCAs.	shall be 10(40% of maximum marks-25) in theory experiential learning component of the PCC shall e experiential learning shall be included in their	
	respective module only.				

B.N.M. Institute of Technology

An Autonomous Institution under VTU Dept. of Electronics and Communication Engineering Choice Based Credit System (CBCS and Outcome Based Education (OBE))

Semester: IV					
Course Name: Digital Signal Processing (Professional Core Course)Course Code: 22ECE142					
L: T: P: J	3: 2: 0: 0	CIA Marks: 50			
Credits:	4	SEA Marks: 50			
Hours/Week (Total) 5hrs/week (50) SEA Duration: 03 Hours					

Course Learning Objectives: The students will be able to

- 1 To discuss continuous and discrete-time signals and systems, their properties, representations, and methods that are necessary for the analysis of continuous and discrete-time signals and systems.
- 2 To develop the mathematical and computational skills needed in application areas like communication, signal processing, and control, which will be taught in other courses.
- 3 Understand the concept of Z-transforms, frequency domain sampling, and Discrete Fourier Transform (DFT).
- 4 Design digital FIR filters and IIR filters.

Module-1:	No. of Hours	Blooms Cognitive Levels
 Introduction and Classification of Signals: Definition of signal and Classification of signals Basic Operations on signals: Amplitude scaling, addition, multiplication, Differentiation, and Integration of signals. Time scaling, time shift, and time reversal. Elementary signals/functions: Exponential, sinusoidal, step, impulse, ramp functions, triangular, and rectangular pulse. 	10	Apply CO1
Module-2:	·	
System and its properties : Definition of system, Linear-nonlinear, Time variant-invariant, causal-noncausal, static-dynamic, Stable and Unstable Systems. Impulse response representation of LTI Systems: Convolution Sum & Convolution Integral (combination of Unit Step and Exponential). Properties of Impulse response representation for LTI systems.	10	Apply CO2
Module-3:		
Z-Transforms: Definition, Basic problems, Region of Convergence, Inverse Z Transform (Partial Fraction Method only). Fourier Representation of aperiodic Signals: Introduction to DTFT, Definition, and basic problems, Properties (Linearity, Time Shift, Frequency Shift, Differentiation in the Frequency Domain).	10	Apply CO3

Module-4:		
IIR Filters : Introduction to IIR filters, Bilinear Transformations, Design of Analog and Digital Butterworth filters (low-pass and high-pass). Realization of IIR filter structure (Direct form I & form II, Cascade, Parallel).	10	Apply CO4
Module-5:		
FIR Filters : Introduction to FIR filters, Frequency response of ideal digital low pass filter, high pass filter, Windowing design of FIR filters using Rectangular, Hanning, Hamming, Blackmann & Bartlett windows. FIR filter realization using Direct form and linear phase structure.	10	Apply CO5

Course Outcomes: After completing the course, the students will be able to						
22ECE142.1	Classify the signals as continuous/discrete, periodic/aperiodic, even/odd, energy/power, and deterministic/random signals.					
22ECE142.2	Determine the linearity, causality, time-invariance, and stability properties of continuous & discrete-time systems and compute convolution.					
22ECE142.3	Represent signals in the frequency domain using Z-Transforms, DTFT, and compute the DFT of signals.					
22ECE142.4	Develop and realize the transfer function of IIR filters					
22ECE142.5	Develop and realize the transfer function of FIR filters.					
22ECE142.6	Interpret the signals and systems used in the different areas of application.					

Reference Books

- 1. "Signals and Systems", Simon Haykin and Barry Van Veen, Wiley India, 2nd Edition, 2018.
- 2. "Digital signal processing Principles Algorithms & Applications", Proakis & Monalakis, 4th Edition, Pearson Education, New Delhi, 2007. ISBN: 81-317-1000-9.
- 3. "Fundamentals of Signals & Systems", Michael Roberts, Tata McGraw-Hill, 2nd edition, 2010, ISBN 978-0-07-070221-9.
- 4. "Digital Signal processing Fundamentals and Applications", Li Tan, Jean Jiang, Academic Press, 2013, ISBN: 978-0-12-415893.
- 5. "Digital Signal Processing, A Computer Based Approach", Sanjit K Mitra, 4th Edition, McGraw Hill Education, 2013.
- "Signals and Systems", Dr. D. Ganesh Rao and Satish Tunga, Cengage India Private Limited, 2017, ISBN: 978-81-315-3362-8
- 7. "Digital Signal Processing", Dr. D. Ganesh Rao and Vineeth P Gejji, Cengage India Private Limited, 2017, ISBN: 9386858231

Marks Distribution for Assessment:

PCC CIA		SEA	CIA (50)			SEA Conduction: 100 M	
	CIA	SLA		Ι	II	Reduced to: 50 M	
J	I	50 50	Written	50	50		
20 conduction			Test	Average of two tests – 25 Marks		Five questions with each of 20 marks (with internal choice).	
npu	50 5		Assignment	15		Student should answer one full question from each module	
0	01		AAT	1	10		
\cup				Total	– 50 marks	Total – 50 marks	

i) CIA: 50%

IA Test: 2 IA tests - Each of 50 Marks	Average of 2 tests – scaled down to 25 M
Assignment – Two assignments – one for 10 marks and another for 5 marks	15 Marks
Additional Assessment Tools (AAT) – Oral /Online Quizzes, Presentations, Group discussions, Case studies, Term Paper, Open ended experiments, Mini industrial/social/rural Projects, Two-minute video on latest topic, Short MOOC courses, Practical Orientation on Design thinking, creativity & Innovation, Participatory & Industry integrated learning, Practical activities, Problem solving exercises, Participation in seminars/academic events/symposia and any other activity	10 Marks
Total	50 Marks

ii) **SEA : 50%**

Theory Exam	5 questions to answer each of 20 Marks 2 questions from each module with internal choice Student should answer one full question from each module	20 M x 5 = 100 M reduced to 50 M
	Total	50 Marks

B.N.M. Institute of Technology

An Autonomous Institutionunder VTU Dept. of Electronics and Communication Engineering Choice Based Credit System (CBCS and Outcome Based Education (OBE))

	Semester: IV	~		
Course Name:Control Syst	ems Cou	irse Code:22	ECE143	
L:T:P:J	1: 2: 2:0	CIAMarks:	50	
Credits:		EAMarks:50		
Hours/Week (Total)	5	SEADuratio	on:03Hours	
Pre-Requisites: Basic Elect	rical, Mathematical Preliminaries			
CourseLearning Objective	es:Thestudentswillbeable to			
1 Understand the termine	ologies of control systems and mathematical	modelling of	electrical and	
mechanical system.				
2 Determine the transfer	function from block diagram and signal flow	[,] graph		
3 Find time response from	m Transfer Functions			
4 Analyze the stability of	a system in time and frequency domain			
Andreis 1. Introduction to	Control Sustance	No. of	BloomsCo	
Module-1: Introduction to	Control Systems	Hours	gnitiveLev els	
Introduction to Control S	ystems: Definitions, Classification of control	ol	C15	
	ed loop, linear and nonlinear, time variant an			
• • •	and discrete time systems. Block diagram of		Apply	
	ed loop control system. The transfer functio			
concept, transfer function	of simple electrical networks. Mathematica	al	CO1	
Modeling and Represent	tation mechanical translational, rotationa	al		
systems and electrical syste	m. Analogous Systems.			
0	algebra and Signal Flow graph			
	ignal Flow graph: Block Diagram Reduction		Apply	
	's Gain Formula (No Proof), Conversion from	m 8	CO2	
electrical circuit to SFG and B			002	
Module-3: Time Response o	6		1	
-	k Control Systems: Standard test signals, ste	•	A	
	order systems, time domain specifications. Typ dy state error and static error constants. Concept		Apply	
for P, PD, PI and PID Control	•	15	CO3	
Module–4: Time Domain A				
	ot of stability, R H criterion, applications of I	R		
H criterion with limitations			Apply	
8 8 8 8 C				
rules, Analysis of stability b	-			
Module–5: Frequency Do			1	
	sis: Correlation between frequency respons	se		
	requency domain specifications, concept of	of	Apply	
-	rgin, Introduction to frequency domain plot	×	CO5	
Polar plots, Bode and inverse				

Practical Experiments				
Sl. No	Experiments			
1	Effect of feedback on DC servo motor			
2	Determination of transfer function of electric/ mechanical System			
3	Time Response of First order system			
4	Time response of Second order system			
5	Stability Analysis Based on Pole Position			
6	To reduce steady state error of a system using MATLAB.			
7	Create root locus for a given transfer function using MATLAB.			
8	To observe effect of the PID parameters on the closed loop dynamics using MATLAB.			
9	Stability Analysis of system using Bode Plot			
10	To obtain Nyquist Plot for a given transfer function of the system using MATLAB and comment on the stability.			

Course Outcomes: After completing the course, the students will be able to

22ECE143.1	Develop the mathematical model of mechanical, electrical systems and transfer function for a given control system
	Tunction for a given control system
22FCF143 2	Develop transfer function using block diagram reduction and signal flow graph
22ECE1 - 3.2	techniques.
22ECE143.3	Determine the time domain specifications for first and second order system
22ECE143.4	Determine the stability of a system in time domain using Routh-Hurwitz criterion
22ECE143.4	and Root locus technique.
22ECE143.5	Determine the stability of a system in the frequency domain using Polar, Nyquest
22ECE145.5	and bode plots.
22ECE143.6	Explain the method of conserving energy using closed loop control system.

ReferenceBooks

- "Control Engineering", J. Nagrath & M. Gopal, New Age International Publishers/ 5th edition/ 2005.
- 2. "Automatic Control Systems", Benjamin C. Kuo, John Wiley India Pvt. Ltd./ 8thEdition/ 2008.
- 3. "Control systems", AAnandKumar, PHIlearningprivatelimited, NewDelhi
- 4. "Control Engineering", D.Ganesh Rao and K.Channavenkatesh Publisher-Sanguine Technical Publishers, 2008.

Marks Distribution for Assessment:

				CIA (50)		SEA
PCI	CIA	SEA		Ι	II	Conduction: 100 M Reduced to: 50 M
			Written	50	50	
Conduction	50	50	Test	Average of two tests – 50 marks scaled down to 15 marks		Five questions with
			Assignment	Average of 2 As	signments – 10M	each of 20 marks (with internal choice). Student should answer
Cond			Practical	Weekly Assessm IA test – 15 Mark (IA test to be co and scaled down	rs nducted for 50 M	one full question from each module

Total – 50 Marks To

i) CIA: 50%

Theory	IA Test (Theory): 2 IA tests - each of 50 Marks – Average of 2 tests scaled down to 15 MarksAssignment :2 Assignments – each of 10 marks	25 Marks
Lab	Weekly Assessment – 10 Marks Practical test (1) - 15 marks	25 Marks
	Total	Marks

ii) **SEA : 50%**

Question Paper:

Theory Exam	5 questions to answer, each of 20 Marks 2 questions from each module with internal choice Student should answer one full question from each module	20 M x 5 = 100 M Reduced to 50 M
	Total	50 Marks

B.	N.M. Institute of G	Technolog	Ŋ					
An Autonomous Institution under VTU								
-	Dept. of Electronics and Communication Engineering Choice Passed Credit System (CPCS and Outcome Passed Education (OPE))							
	Choice Based Credit System (CBCS and Outcome Based Education (OBE)) Semester: IV							
Course Name: ARM M	Course Name: ARM Microcontroller & Its Application Course Code: 22ECE144							
L:T:P:J								
Credits:	4	SEE Marks :						
Hours/Week(Total)	5	SEE Duration	1: 03 Hou	irs				
	owledge of Microcontroller/Mi tives: The students will be abl	*						
	rchitectural features of 32 bit m		ARM Cor	rtex M3.				
2 Program ARM C applications.	Cortex M3 using the instruction	ons set and C	language	e for different				
3 Describe the mer	nory systems, bus interface uni	t, exceptions of	ARM Co	ortex M3.				
Module-1: ARM-32 bit	Microcontroller		No. of	Blooms				
			Hours	Cognitive Levels				
	13, Architecture of ARM Corte		10	Understand				
	re, Debugging support, Ger	-		CO1				
• •	sters, Exceptions/ Interrupts, pt Controller, Stack operation							
Modes.	ipt Controller, Stack Operation	on, operation						
Module-2: ARM Corte	ex M3 Instruction Sets and Pr	ogramming-Pa	art 1					
ARM Cortex M3 Inst	ruction, Assembly basics, C	General Data-	10	Apply				
	Bit Field instructions, IF THE			CO2				
-	x M3 Instruction Sets and Pro	ogramming-Pa	rt 2					
Memory Access instruction	ions, Branch control instructio	ns, Combined	10	Apply				
-	Branch, Typical Development	Flow, CMSIS,		CO3				
Programming in C, Progr Module–4: Memory Sys								
	s Overview, Memory Maps, M	emory Access	10	Understand				
	perations, The Pipeline, A D	•	10	CO4				
-	on the Cortex-M3: The I-Code							
Code Bus, The System Bus, The External PPB, The DAP Bus								
Module-5: Exceptions in	Module–5: Exceptions in Cortex M3							
Exception Types Definition	itions of Priority Vector Tal	oles. Interrupt	10	Understand				
	Exception Types, Definitions of Priority, Vector Tables, Interrupt10UnderstandInputs and Pending Behaviour, Fault Exceptions Bus Faults, MemoryCO5							
-	ge Faults, Hard Faults, Dealin	•						
Supervisor Call and Pend able Service Call								
	List of Lab Experim	ents	<u> </u>					

List of Lab Experiments
1. ALP to find the sum of first 10 integer numbers.
2. ALP to multiply two 16 bit binary numbers.

3. ALP to find the number of 0's and 1'	s in a 32 bit data	
---	--------------------	--

4. ALP to find determine whether the given 16 bit is even or odd

5.	ALP	to	store	data	in	the	RAM	

- 6. ALP to reverse the string
- 7. Interface a simple Switch and display its status through Relay, Buzzer and LED.
- 8. Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.
- 9. Interface a DAC and generate Triangular and Square waveforms.
- 10. Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in between.
- 11. Interface keypad & display the Key Pressed on LCD
- 12. Toggle the LED when an external interrupt occurs

Revision

Lab Assessment & evaluation

Course Outcomes:	After completing the course, the students will be able to
22ECE144.1	Understand the architectural features of 32-bit microcontroller ARM Cortex M3.
22ECE144.2	Apply the knowledge of instruction set of ARM Cortex M3 for programming
22ECE144.3	Apply the knowledge of embedded C Programming for ARM Cortex M3 for different applications.
22ECE144.4	Understand the memory map & Bus interface unit of ARM Cortex M3
22ECE144.5	Understand the exceptions of ARM Cortex M3.
22ECE144.6	Design a Embedded system using ARM CortexM3 for Societal needs, Health care, Home application

Reference Books

- 1. "The Definitive Guide to the ARM® Cortex-M3", Joseph Yiu, Second Edition, 2009.
- 2. "Discovering the STM32 Microcontroller", Geoffrey Brown, Publisher: Indiana University, 2016.

Marks Distribution for Assessment:

				CIA (50)		SEA	
PCI	CIA	SEA		Ι	Π	Conduction: 100 M Reduced to: 50 M	
			Witten	50	50		
ų		Written Test	U	tests – 50 marks 1 to 15 marks	Five questions with each		
actio	50	50 50 -	U	Assignment	Average of 2 As	signments – 10M	of 20 marks (with internal choice). Student should answer one full
Conduction	50		Practical	Weekly Assessm IA test – 15 Mark (IA test to be con and scaled down	ts ducted for 50 M	question from each module	
					Total – 50 Marks	Total – 50 Marks	

i) CIA: 50%

	IA Test (Theory): 2 IA tests - each of 50 Marks –	
Theory		Average of 2 tests scaled down to 15 Marks	25 Marks
	Assignment :	2 Assignments – each of 10 marks	

		Total	50 Marks
Lab	Weekly Assessment – 10 Marks Practical test (1) - 15 marks		25 Marks

ii) SEA : 50% Question Paper:

Theory Exam	5 questions to answer, each of 20 Marks 2 questions from each module with internal choice Student should answer one full question from each module		20 M x 5 = 100 M Reduced to 50 M
		Total	50 Marks

B.N.M. Institute of Technology

An Autonomous Institution under VTU Dept. of Electronics and Communication Engineering Choice Based Credit System (CBCS and Outcome Based Education (OBE))

L: T: P: J 3:0:2:0 CIA Marks: 50 Credits: 4 SEA Marks: 50 Hours/Week (Total) 50 hours SEA Duration: 03 Hour Pre-Requisites: Fourier Transform, Basics of Signals and systems SEA Duration: 03 Hour Course Learning Objectives: The students will be able to 1 Understand and analyze concepts of Analog Modulation schemes viz; AM, FM techniques. 2 Understand and analyze concepts of Analog Modulation schemes viz; AM, FM techniques. 1 3 Understand the concept of signal processing of digital data and signal conversion to symbols a the transmitter and receiver. 1 4 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 5 5 Understand and analyze the concepts of Digital Modulation schemes and compute performanc metrics of bandlimited channel. No. of Hours Module-1: AMPLITUDE MODULATION Modulation, Amplitude Modulation: Time & Tequency Domain description, switching modulator, Envelop detector. No. of Hours DOUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: 10 Apply COI NGule-2: ANGLE MODULATION 4 Module-2: ANGLE MODULATION Apply COI NGLE MODULATION: Basic definitions, Frequency Modulation: darrow Band FM, wide Band FM, the Transmission bandwidth of FM Signals, Generation of FM Signals, Demodulati	Course Name: Analog and 1				
L: T: P: J 3:0:2:0 CIA Marks: 50 Credits: 4 SEA Marks: 50 Hours/Week (Total) 50 hours SEA Duration: 03 Hour Pre-Requisites: Fourier Transform, Basics of Signals and systems SEA Duration: 03 Hour Course Learning Objectives: The students will be able to 1 Understand and analyze concepts of Analog Modulation schemes viz; AM, FM techniques. 2 Understand and analyze concepts of gigital data and signal conversion to symbols a the transmitter and receiver. 4 Understand the concept of signal processing of digital data and signal conversion to symbols a the transmitter and receiver. 4 Understand and analyze the concepts of Digital Modulation schemes and compute performance metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION Modulation, Communication Block Top Modulation, Amplitude Modulation, Time & Top Modulation, Time & Top Modulation, Communication Block Top Modulation, Commani description, switching modulator, Envelop detector. No. of Hours OUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: 10 Apply CO1 Nodule-2: ANGLE MODULATION Module3: Generation of FM Signals, Demodulation of FM Signals, FM ignals, Generation of FM Signals, Demodulation of FM Signals, FM ignals, Generation of FM Signals, Demodulation of FM Signals, FM ignals, Generation of FM Signals, Demodulation of FM Signals, FM ignals, Generation of PM QUANTIZATION 10 Apply CO2 Module-3: SAMPL		Digital Communication (Integrated Laborat	ory)		
Credits: 4 SEA Marks: 50 Hours/Week (Total) 50 hours SEA Duration: 03 Hour Pre-Requisites: Fourier Transform, Basics of Signals and systems SEA Duration: 03 Hour Course Learning Objectives: The students will be able to SEA Marks: 50 1 Understand and analyze concepts of Analog Modulation schemes viz; AM, FM techniques. 2 Understand the concept of signal processing of digital data and signal conversion to symbols a the transmitter and receiver. 4 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 5 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 6 Understand analyze the concepts of Digital Modulation schemes and compute performanc metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION Modulation. Time & trequency Domain description, Amplitude Modulation: Time & trequency Domain description, and indulator, Envelop detector. 10 OUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: 10 Apply CO1 Ime and Frequency Domain description, Ring modulator Coherent etection, Costas Receiver, Frequency Transmission bandwidth of FM Signals, PM such and FM, Wide Band FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM techniques, Pulse-Osted Modulation, Time Division Multiplexing, Pulse-Tocked Loop: Linear model of PLL. 10 Module-3: SAMPLING AND QUANTIZATION 10 Apply CO3 Naves, Quantization Random Process, Quantization N	Course Code: 22ECE145				
Hours/Week (Total) 50 hours SEA Duration: 03 Hour Pre-Requisites: Fourier Transform, Basics of Signals and systems Course Learning Objectives: The students will be able to 1 Understand and analyze concepts of Analog Modulation schemes viz; AM, FM techniques. 2 Understand and analyze concepts digitization of signals viz; sampling, quantizing, and encoding 3 3 Understand the concept of signal processing of digital data and signal conversion to symbols a the transmitter and receiver. 4 4 Understand and analyze the concepts of Digital Modulation schemes and compute performanc metrics of bandlimited channel. No. of bigital signals. 5 Understand and danalyze the concepts of Digital Modulation: Time & transmiter and receiver. 8 4 Understand and analyze the concepts of Digital Modulation schemes and compute performanc metrics of bandlimited channel. No. of bigaram, Need for Modulation, Amplitude Modulation: Time & trequency Domain description, switching modulator, Envelop detector. No. of Hours Blooms OUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: 10 Apply CO1 Wareectiver, Frequency Translation. 10 Apply CO1 NarGLE MODULATION: Basic definitions, Frequency Modulation: sampling, Pulse-Tocked Loop: Linear model of PLL. 10 Apply CO2 Module-3: SAMPLING AND QUANTIZATION 10 Apply	L: T: P: J	3:0:2:0			
Pre-Requisites: Fourier Transform, Basics of Signals and systems Course Learning Objectives: The students will be able to 1 Understand and analyze concepts of Analog Modulation schemes viz; AM, FM techniques. 2 Understand and analyze concepts digitization of signals viz; sampling, quantizing, and encoding the transmitter and receiver. 4 Understand the concept of signal processing of digital data and signal conversion to symbols a the transmitter and receiver. 5 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 5 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 6 Understand and analyze the concepts of Digital Modulation schemes and compute performanc metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION Modulation, Amplitude Modulation: Time & Transmission description, switching modulator, Envelop detector. No. of Hours DOUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: 10 Apply CO1 Notelection, Costas Receiver, Frequency Translation. 10 Apply CO1 Notelection, Costas Receiver, Frequency Transmission bandwidth of FM signals, Generation of FM Signals, Demodulation of FM Signals, FM signals, Generation of FM Signals, Demodulation of FM Signals, FM signals, Generation of PM Signals, Demodulation of FM Signals, FM signals, Generation of PPM Waves, Detection of PPM Vaves, Quantization Random Process, Quantization Noise. 10 Apply	Credits:	4	SEA Mark	s: 50	
Course Learning Objectives: The students will be able to 1 Understand and analyze concepts of Analog Modulation schemes viz; AM, FM techniques. 2 Understand and analyze concepts digitization of signals viz; sampling, quantizing, and encoding 3 Understand the concept of signal processing of digital data and signal conversion to symbols at the transmitter and receiver. 4 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 5 Understand and analyze the concepts of Digital Modulation schemes and compute performance metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION Modulation, Amplitude Modulation: Time & Trequency Domain description, switching modulator. Envelop detector. OUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: 10 Module-2: ANGLE MODULATION 10 Module-2: ANGLE MODULATION 10 Narrow Band FM, Wide Band FM, the Transmission bandwidth of FM ignals, Generation of FM Signals, Demodulation of FM Signals, FM ignals, Generation of PM Signals, Demodulation of PLL. 10 Module-3: SAMPLING AND QUANTIZATION 10 Inroduction, Why Digitize Analog Sources? The Low pass Sampling rocess, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse-Dosition Modulation, Generation of PPM Waves, Detection of PPM Vaves, Quantization Random Process, Quantization Noise. 10 Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS	Hours/Week (Total)				
1 Understand and analyze concepts of Analog Modulation schemes viz; AM, FM techniques. 2 Understand and analyze concepts digitization of signals viz; sampling, quantizing, and encoding 3 Understand the concept of signal processing of digital data and signal conversion to symbols a the transmitter and receiver. 4 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 5 Understand and analyze the concepts of Digital Modulation schemes and compute performanc metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION: No. of Blooms Cognitive Evence of Modulation, Amplitude Modulation: Time & Trequency Domain description, switching modulator, Envelop detector. OUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: Time and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Transmission bandwidth of FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM tetreo Multiplexing, Phase-Locked Loop: Linear model of PLL. 10 Apply CO1 Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitze Analog Sources? The Low pass Sampling roces, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse-ostion Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise. 10 Apply CO3 Module-3: SAMPLING AND QUANTIZATION Module-4: BASE-BAND TRANSMISSION OF DIGITAL S	Pre-Requisites: Fourier Tra	ansform, Basics of Signals and systems			
1 Understand and analyze concepts of Analog Modulation schemes viz; AM, FM techniques. 2 Understand and analyze concepts digitization of signals viz; sampling, quantizing, and encoding 3 Understand the concept of signal processing of digital data and signal conversion to symbols a the transmitter and receiver. 4 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 5 Understand and analyze the concepts of Digital Modulation schemes and compute performanc metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION: No. of Blooms Cognitive Evence of Modulation, Amplitude Modulation: Time & Trequency Domain description, switching modulator, Envelop detector. OUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: Time and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Transmission bandwidth of FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM tetreo Multiplexing, Phase-Locked Loop: Linear model of PLL. 10 Apply CO1 Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitze Analog Sources? The Low pass Sampling roces, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse-ostion Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise. 10 Apply CO3 Module-3: SAMPLING AND QUANTIZATION Module-4: BASE-BAND TRANSMISSION OF DIGITAL S					
2 Understand and analyze concepts digitization of signals viz; sampling, quantizing, and encoding the transmitter and receiver. 3 Understand the concept of signal processing of digital data and signal conversion to symbols a the transmitter and receiver. 4 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 5 Understand and analyze the concepts of Digital Modulation schemes and compute performance metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION: Modulation. MMPLITUDE MODULATION: Introduction, Communication Block itagram, Need for Modulation, Amplitude Modulation: Time & requency Domain description, switching modulator, Envelop detector. No. of Hours OUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: 10 Apply CO1 Collecterion, Costas Receiver, Frequency Translation. 10 Apply CO1 Module-2: ANGLE MODULATION: Eared Environ of FM Signals, Demodulation of FM Signals, FM tereo Multiplexing, Phase-Locked Loop: Linear model of PLL. 10 Apply CO2 Module-3: SAMPLING AND QUANTIZATION 10 Apply CO3 Apply CO3 Notes, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse-osition Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise. 10 Apply CO3 Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS 10 Apply CO3					
3 Understand the concept of signal processing of digital data and signal conversion to symbols a the transmitter and receiver. 4 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 5 Understand and analyze the concepts of Digital Modulation schemes and compute performanc metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION Module-1: AMPLITUDE MODULATION: MMPLITUDE MODULATION: Introduction, Communication Block liagram, Need for Modulation, Amplitude Modulation: Time & requency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation. No. of Hours Module-2: ANGLE MODULATION: 10 Apply CO1 NMGLE MODULATION: Base definitions, Frequency Modulation: No. of Hours Narrow Band FM, Wide Band FM, the Transmission bandwidth of FM signals, Generation of FM Signals, Demodulation of FM Signals, FM tereo Multiplexing, Phase-Locked Loop: Linear model of PLL. 10 Apply CO2 Module-3: SAMPLING AND QUANTIZATION 10 Apply CO3 Apply CO3 Vaves, Quantization Random Process, Quantization Noise. 10 Apply CO3 Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS 10 Apply CO3 Vaves, Quantization Random Process, Quantization Noise. 10 Apply CO3 Wodule-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS 10					
the transmitter and receiver. 4 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 5 Understand and analyze the concepts of Digital Modulation schemes and compute performance metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION Module-1: AMPLITUDE MODULATION Module-1: AMPLITUDE MODULATION: Module-1: AMPLITUDE MODULATION: Modulation, Amplitude Modulation: Time & Traquency Domain description, switching modulator, Envelop detector. OUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: "ime and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation. 10 Apply CO1 Module-2: ANGLE MODULATION: Narrow Band FM, Wide Band FM, the Transmission bandwidth of FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM tereo Multiplexing, Phase–Locked Loop: Linear model of PLL. 10 Apply CO2 Module-3: SAMPLING AND QUANTIZATION Nuclease Amplitude Modulation, Time Division Multiplexing, Pulse-Dosition Modulation, Generation of PPM Waves, Detection of PPM Vaves, Quantization Random Process, Quantization Noise. 10 Apply CO3 Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, F					
4 Understand the concepts of waveform coding for Base-band Transmission of digital signals. 5 Understand and analyze the concepts of Digital Modulation schemes and compute performanc metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION Module-1: AMPLITUDE MODULATION: MMPLITUDE MODULATION: Introduction, Communication Block itagram, Need for Modulation, Amplitude Modulation: Time & Trequency Domain description, switching modulator, Envelop detector. No. of Hours OUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: 10 Apply CO1 Sime and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation. 10 Apply CO1 Module-2: ANGLE MODULATION: No. of FM Signals, Demodulation of FM Signals, FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Signals, Phase–Locked Loop: Linear model of PLL. 10 Apply CO2 Module-3: SAMPLING AND QUANTIZATION 10 Apply CO2 Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse-Dosed Modulation, Time Division Multiplexing, Pulse-Dosed Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise. 10 Apply CO3 Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS 10 Apply CO3 Pulse-Code Modulation: Sampling, Quantiz			l conversion	to symbols at	
5 Understand and analyze the concepts of Digital Modulation schemes and compute performanc metrics of bandlimited channel. Module-1: AMPLITUDE MODULATION AMPLITUDE MODULATION: Introduction, Communication Block for Modulation, Amplitude Modulation: Time & trequency Domain description, switching modulator, Envelop detector. No. of Hours Blooms Cognitive Levels Cognitive Levels 10 Apply CO1 Collabel Side BAND-SUPPRESSED CARRIER MODULATION: Time and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation. 10 Apply CO1 Module-2: ANGLE MODULATION: Basic definitions, Frequency Modulation: Narrow Band FM, Wide Band FM, the Transmission bandwidth of FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Itereo Multiplexing, Phase–Locked Loop: Linear model of PLL. 10 Apply CO2 Module-3: SAMPLING AND QUANTIZATION 10 Apply CO2 Introduction, Why Digitize Analog Sources? The Low pass Sampling rocess, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse-Dosition Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise. 10 Apply CO3 Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS 10 Apply CO3 Apply CO3 Vaves, Quantization Random Process, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. 10 Apply CO3 Introduction, Inter			· · · · · ·	·/ 1 · 1	
metrics of bandlimited channel.No. of BloomsModule-1: AMPLITUDE MODULATIONModulation, Amplitude Modulation: Time & Trequency Domain description, switching modulator, Envelop detector.No. of HoursOUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: Time and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation.10Apply CO1Module-2: ANGLE MODULATION Signals, Generation of FM Signals, Demodulation of FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM itereo Multiplexing, Phase-Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling rocess, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation: Generation of PPM Waves, Detection of PPM Vaves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Sase-band transmission of Digital Signals: Gram-Schnidt rrthogonalization procedure, Baseband pulse, Pulse Shaping and Matched rither Detection, Intersymbol interference (qualitative analysis), Eye attern.10Apply CO4					
Module-1: AMPLITUDE MODULATIONMMPLITUDE MODULATION:Introduction, Communication Block frequency Domain description, switching modulator, Envelop detector. DOUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: Time and Frequency Domain description, Ring modulator Coherent etection, Costas Receiver, Frequency Translation.No. of HoursBlooms Cognitive LevelsModule-2: ANGLE MODULATION: Signals, Generation of FM Signals, Demodulation of FM Signals, FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Stereo Multiplexing, Phase–Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Vaves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS vulse–Code Modulation: Sase-band transmission of Digital Signals: Gram-Schmidt rthogonalization procedure, Baseband pulse, Pulse Shaping and Matched iflter Detection, Intersymbol interference (qualitative analysis), Eye10Apply CO3		1 0	and comput	e periormance	
MPLITUDE MODULATION: Introduction, Amplitude Modulation: Time & Reguency Domain description, switching modulator, Envelop detector. DOUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: Time and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation.No. of HoursBlooms Cognitive LevelsModule-2: ANGLE MODULATION: Startow Band FM, Wide Band FM, the Transmission bandwidth of FM bignals, Generation of FM Signals, Demodulation of FM Signals, FM itereo Multiplexing, Phase–Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Vaves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS Pulse-Code Modulation: Sase-band transmission of Digital Signals: Gram-Schmidt trithogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO3	metrics of bandminted c	channel.			
MPLITUDE MODULATION: Introduction, Amplitude Modulation: Time & Reguency Domain description, switching modulator, Envelop detector. DOUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: Time and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation.No. of HoursBlooms Cognitive LevelsModule-2: ANGLE MODULATION: Startow Band FM, Wide Band FM, the Transmission bandwidth of FM bignals, Generation of FM Signals, Demodulation of FM Signals, FM itereo Multiplexing, Phase–Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Vaves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS Pulse-Code Modulation: Sase-band transmission of Digital Signals: Gram-Schmidt trithogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO3	Module-1: AMPLITUDE N	MODULATION			
HoursCognitive Cognitive LevelsHoursCognitive LevelsPOUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION: Time and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation.10Module-2: ANGLE MODULATION NGLE MODULATION: Stereo Multiplexing, Phase–Locked Loop: Linear model of PLL.10Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS Pulse-Code Modulation: Sase-band transmission of Digital Signals: Gram-Schmidt trthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10			No. of	Blooms	
Induitation, Amplitude Information, Amplitude Information, Amplitude Information, Amplitude Information, Envelop detector.LevelsPouble Side BAND-SUPPRESSED CARRIER MODULATION: Time and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation.10Apply CO1Module-2: ANGLE MODULATION letection, Costas Receiver, Frequency Translation.10Apply CO1Module-2: ANGLE MODULATION: bignals, Generation of FM Signals, Demodulation of FM Signals, FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Stereo Multiplexing, Phase-Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling rocess, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Vosition Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt trthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO3			011100	Cognitive	
DOUBLÉ SIDE BAND-SUPPRESSED CARRIER MODULATION: Cime and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation.10Apply CO1Module-2: ANGLE MODULATION NARDE MODULATION: Narrow Band FM, Wide Band FM, the Transmission bandwidth of FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM bitereo Multiplexing, Phase–Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- osition Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS Pulse-Code Modulation: Sampling, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt rrthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO4	0	· •			
Time and Frequency Domain description, Ring modulator Coherent letection, Costas Receiver, Frequency Translation.10Apply CO1Module-2: ANGLE MODULATION NGLE MODULATION: Basic definitions, Frequency Modulation: Narrow Band FM, Wide Band FM, the Transmission bandwidth of FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Stereo Multiplexing, Phase–Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt wrthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO4	creatency i jomain desc rint i	on switching modulator Envelop detector		Levels	
InterceptionContentModule-2: ANGLE MODULATIONApply CO2ANGLE MODULATION: Basic definitions, Frequency Modulation: Narrow Band FM, Wide Band FM, the Transmission bandwidth of FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Bignals, Generation, Multiplexing, Phase–Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO4					
Module-2: ANGLE MODULATIONANGLE MODULATION: Basic definitions, Frequency Modulation: Narrow Band FM, Wide Band FM, the Transmission bandwidth of FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Stereo Multiplexing, Phase–Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO4	DOUBLE SIDE BAND-SU	PPRESSED CARRIER MODULATION		Apply	
ANGLE MODULATION: Basic definitions, Frequency Modulation: Narrow Band FM, Wide Band FM, the Transmission bandwidth of FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM Signals, Generation of FM Signals, Demodulation of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS10Apply CO3Pulse-CodeModulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO4	DOUBLE SIDE BAND-SU Time and Frequency Dom	PPRESSED CARRIER MODULATION ain description, Ring modulator Coherent		Apply	
Narrow Band FM, Wide Band FM, the Transmission bandwidth of FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Bignals, Generation of FM Signals, Demodulation of FM Signals, FM Bignals, Generation, Phase–Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATION Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- 	DOUBLE SIDE BAND-SU Time and Frequency Dom detection, Costas Receiver, F	PPRESSED CARRIER MODULATION ain description, Ring modulator Coherent Frequency Translation.		Apply	
Signals, Generation of FM Signals, Demodulation of FM Signals, FM Stereo Multiplexing, Phase–Locked Loop: Linear model of PLL.10Apply CO2Module-3: SAMPLING AND QUANTIZATIONIntroduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS10Apply CO3Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye 	DOUBLE SIDE BAND-SU Time and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU	PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation.	10	Apply	
Stereo Multiplexing, Phase–Locked Loop: Linear model of PLL.CO2Module-3: SAMPLING AND QUANTIZATIONIntroduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS10Apply CO3Pulse–Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye pattern.10Apply CO4	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION:	PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation:	10	Apply	
Module-3: SAMPLING AND QUANTIZATIONIntroduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS10Apply CO3Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO4	DOUBLE SIDE BAND-SU Time and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba	PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM	10	Apply CO1 Apply	
Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALSPulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO3	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM	PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM	10	Apply CO1 Apply	
Introduction, Why Digitize Analog Sources? The Low pass Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse- Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALSPulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye mattern.10Apply CO3	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM	PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM	10	Apply CO1 Apply	
Apply cosition Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALS10Apply CO3Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye10Apply CO4	DOUBLE SIDE BAND-SU Time and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase–	PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL.	10	Apply CO1 Apply	
Position Modulation, Generation of PPM Waves, Detection of PPM Waves, Quantization Random Process, Quantization Noise.10Apply CO3Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALSPulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye10Apply CO3	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase– Module-3: SAMPLING A	PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION	10	Apply CO1 Apply	
Waves, Quantization Random Process, Quantization Noise.COSModule-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALSPulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye10Apply CO4	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase	PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION Analog Sources? The Low pass Sampling	10 10	Apply CO1 Apply CO2	
Module-4: BASE-BAND TRANSMISSION OF DIGITAL SIGNALSPulse-CodeModulation:Pulse-CodeModulation:Sampling,Quantization,Encoding,Filtering,Multiplexing;Delta Modulation.Base-bandtransmissionofDigitalDigitalSignals:Gram-Schmidt10FilterDetection,Intersymbolinterference(qualitativeanalysis),Eyebattern.	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase– Module-3: SAMPLING A Introduction, Why Digitize process, Pulse Amplitude Mo	PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION Analog Sources? The Low pass Sampling odulation, Time Division Multiplexing, Pulse-	10 10	Apply CO1 Apply CO2 Apply	
Pulse–Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye pattern.	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase– Module-3: SAMPLING A Introduction, Why Digitize process, Pulse Amplitude Mo Position Modulation, Generation	 PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION Analog Sources? The Low pass Sampling boulation, Time Division Multiplexing, Pulse- ration of PPM Waves, Detection of PPM 	10 10	Apply CO1 Apply CO2 Apply	
Regeneration, Decoding, Filtering, Multiplexing; Delta Modulation. Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye battern.	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase– Module-3: SAMPLING A Introduction, Why Digitize process, Pulse Amplitude Mo Position Modulation, Generation	 PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION Analog Sources? The Low pass Sampling boulation, Time Division Multiplexing, Pulse- ration of PPM Waves, Detection of PPM 	10 10	Apply CO1 Apply CO2 Apply	
Base-band transmission of Digital Signals: Gram-Schmidt orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye pattern.	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase– Module-3: SAMPLING A Introduction, Why Digitize process, Pulse Amplitude Mo Position Modulation, Generation Waves, Quantization Randon	 PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION Analog Sources? The Low pass Sampling Doulation, Time Division Multiplexing, Pulse- ration of PPM Waves, Detection of PPM n Process, Quantization Noise. 	10 10 10	Apply CO1 Apply CO2 Apply	
orthogonalization procedure, Baseband pulse, Pulse Shaping and Matched Filter Detection, Intersymbol interference (qualitative analysis), Eye pattern.	DOUBLE SIDE BAND-SU Time and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase– Module-3: SAMPLING A Introduction, Why Digitize process, Pulse Amplitude Mo Position Modulation, Gener Waves, Quantization Randor Module-4: BASE-BAND	 PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION Analog Sources? The Low pass Sampling bodulation, Time Division Multiplexing, Pulse- ration of PPM Waves, Detection of PPM n Process, Quantization Noise. 	10 10 10 5	Apply CO1 Apply CO2 Apply	
Thogonalization procedure, Baseband pulse, Pulse Shaping and Matched CO4 Filter Detection, Intersymbol interference (qualitative analysis), Eye pattern.	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase– Module-3: SAMPLING A Introduction, Why Digitize process, Pulse Amplitude Module- Position Modulation, Generation Waves, Quantization Randon Module-4: BASE-BAND T Pulse–Code Modulation: Regeneration, Decoding, Filt	 PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION Analog Sources? The Low pass Sampling odulation, Time Division Multiplexing, Pulseration of PPM Waves, Detection of PPM m Process, Quantization Noise. TRANSMISSION OF DIGITAL SIGNALS Sampling, Quantization, Encoding, ering, Multiplexing; Delta Modulation. 	10 10 10 5	Apply CO1 Apply CO2 Apply	
pattern.	DOUBLE SIDE BAND-SU Fime and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase	 PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Trequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION Analog Sources? The Low pass Sampling Doulation, Time Division Multiplexing, Pulse- ration of PPM Waves, Detection of PPM n Process, Quantization Noise. TRANSMISSION OF DIGITAL SIGNALS Sampling, Quantization, Encoding ering, Multiplexing; Delta Modulation. of Digital Signals: Gram-Schmidt 		Apply CO1 Apply CO2 Apply CO3	
	DOUBLE SIDE BAND-SU Time and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase-J Module-3: SAMPLING A Introduction, Why Digitize process, Pulse Amplitude Modulation, Generation Waves, Quantization Randor Module-4: BASE-BAND T Pulse-Code Modulation: Regeneration, Decoding, Filt Base-band transmission orthogonalization procedure,	 PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION Analog Sources? The Low pass Sampling odulation, Time Division Multiplexing, Pulse- ration of PPM Waves, Detection of PPM in Process, Quantization Noise. TRANSMISSION OF DIGITAL SIGNALS Sampling, Quantization, Encoding ering, Multiplexing; Delta Modulation. of Digital Signals: Gram-Schmidt Baseband pulse, Pulse Shaping and Matched 	10 10 10 5 10 5 10	Apply CO1 Apply CO2 Apply CO3	
	DOUBLE SIDE BAND-SU Time and Frequency Dom detection, Costas Receiver, F Module-2: ANGLE MODU ANGLE MODULATION: Narrow Band FM, Wide Ba Signals, Generation of FM Stereo Multiplexing, Phase	 PPRESSED CARRIER MODULATION: ain description, Ring modulator Coherent Frequency Translation. JLATION Basic definitions, Frequency Modulation: nd FM, the Transmission bandwidth of FM Signals, Demodulation of FM Signals, FM Locked Loop: Linear model of PLL. ND QUANTIZATION Analog Sources? The Low pass Sampling odulation, Time Division Multiplexing, Pulse- ration of PPM Waves, Detection of PPM in Process, Quantization Noise. TRANSMISSION OF DIGITAL SIGNALS Sampling, Quantization, Encoding ering, Multiplexing; Delta Modulation. of Digital Signals: Gram-Schmidt Baseband pulse, Pulse Shaping and Matched 	10 10 10 5 10 5 10	Apply CO1 Apply CO2 Apply CO3	

Amplitude shift keying, Frequency shift keying, Binary Phase shift		
keying; Generation and detection with constellation diagram; Performance	10	Apply
analysis; Power and Bandwidth; Bit error rate.	10	CO5

Course Outcomes: After completing the course, the students will be able to

	Derive the time-domain and frequency domain representation of Amplitude nodulation.
	Derive the time-domain and frequency domain representation of Frequency nodulation.
22ECE145.3	Compute the performance of pulse modulation schemes with quantization noise.
22ECE145.4	apply the concepts of waveform coding for Base-band Transmission of digital signals
22ECE145.5	Compute the performance of digital modulation schemes over the noisy channel.
22ECE145.6	Apply and develop the functional blocks of signal processing and communication pplications.

Reference Books

- "Communication Systems", Simon Haykins & Moher, 5th Edition, John Willey, India Pvt. Ltd, 2010, ISBN 978 - 81 - 265 - 2151 - 7.
- 2. "Digital communications", Simon Haykin, John Wiley India Pvt. Ltd, 2008.
- "Digital Communication Systems", Simon Haykin, John Wiley & Sons, First Edition, 2014, ISBN 978-0-471-64735-5.
- "Fundamentals of Communication Systems", John G Proakis and Masoud Salehi, 2014 Edition, Pearson Education, ISBN 978-8-131-70573-5.
- "Modern Digital and Analog Communication Systems", B. P. Lathi, Oxford University Press., 4th edition.
- "An Introduction to Analog and Digital Communication", Simon Haykins, John Wiley India Pvt. Ltd., 2008, ISBN 978–81–265–3653–5.
- "Digital Communications Fundamentals and Applications", Bernard Sklar and Ray, Pearson Education, Third Edition, 2014, ISBN: 978-81-317-2092-9.

	List of Lab Experiments				
Sl. No.	Experiment				
1	Pulse sampling, Verification of sampling theorem.				
2	Time Division Multiplexing and Demultiplexing of two bandlimited signals.				
3	BASK generation and detection.				
4	BFSK generation and detection.				

5	Simulate Amplitude Modulation and Demodulation: Standard AM using MATLAB. (One hour session to be engaged for concept discussion).				
6	Simulate Amplitude Modulation and Demodulation: DSBSC using MATLAB. (One hour session to be engaged for concept discussion).				
7	Simulate Frequency modulation and demodulation using MATLAB.				
8	Simulate Pulse Width modulation and demodulation using MATLAB. (One hour session to be engaged for concept discussion).				
9	Simulate Pulse Position modulation and demodulation using MATLAB. (One hour session to be engaged for concept discussion).				
10	Simulate Pulse code modulation and demodulation using MATLAB. (One hour session to be engaged for concept discussion).				

Marks Distribution for Assessment:

			CIA (50)			SEA	
PCI	CIA	SEA		Ι	Π	Conduction: 100 M Reduced to: 50 M	
			Written	50	50		
Conduction	50			Test	U	tests – 50 marks 1 to 15 marks	Five questions with each
		50 50	Assignment	Average of 2 As	signments – 10M	of 20 marks (with internal choice). Student should answer one full	
		50	Practical	Weekly Assessm IA test – 15 Mark (IA test to be co and scaled down	rs nducted for 50 M	question from each module	
					Total – 50 Marks	Total – 50 Marks	

i) CIA: 50%

Theory	IA Test (Theory	y): 2 IA tests - each of 50 Marks – Average of 2 tests scaled down to 15 Marks	25 Marks
Theory	Assignment :	25 Warks	
Lab	Weekly Assessment – 10 Marks Practical test (1) - 15 marks		25 Marks
		Total	50 Marks

ii) **SEA : 50%**

Question Paper:

Theory Exam	5 questions to answer, each of 20 Marks 2 questions from each module with internal choice Student should answer one full question from each module	20 M x 5 = 100 M Reduced to 50 M
	Total	50 Marks

B.N.M. Institute of Technology

An Autonomous Institution under VTU Dept. of Electronics and Communication Engineering Choice Based Credit System (CBCS and Outcome Based Education (OBE))

	Semester: 4			
Course Name: Signal Process Course Code: 22ECE146	sing Applications of MATLAB (Theory + Lab -	+ Mini Proje	ct)	
L: T: P: J	0: 0: 2: 2	CIA Mark	s: 50	
Credits:	2	SEA Mark	SEA Marks: 50	
Hours/Week (Total)	SEA Durat	t ion: 03 Hour		
Pre-Requisites: Signals and	Systems and DSP Fundamentals			
	ves: The students will be able to			
1 Simulate continuous tim	he, discrete time signals and verify sampling t	heorem usir	ng MATLAB	
	DFT and convolution along with the verifica	tion of their	properties.	
3 Perform operations and	transformations on Images.			
4 Compute and display the	e filtering operations and compare with the th	neoretical va	lues.	
5 Able to use Simulink pla	atform to verify the properties of a system.			
		No. of Hours	Blooms Cognitive Levels	
	ontinuous time waveforms like rectangular triangular pulse, triangular wave, impulse,		Apply CO1	
-	ar convolution of two given sequences. Prove tive, and associative property of convolution.	2	Apply CO1, CO2	
sampling, The Discret transformation, Proper Multiplication of two efficient computation algorithm for DFT com	Trier Transform (DFT) : Frequency domain e Fourier Transform, DFT as a linear rties of the DFT: Periodicity, Linearity, DFTs and Circular Convolution. Necessity for of DFT, Radix-2 Fast Fourier Transform (FFT) mputation. Radix-2 FFT algorithm for e Discrete Fourier Transform (IDFT)	5	Apply CO2	
4. Computation of N po magnitude and phase	int DFT of a given sequence and to plot spectrum.	2	Apply CO2	

5. Introduction to Image processing toolbox. Perform basic image processing operations like add, subtract, complement, and crop.	2	Apply CO3
6. Perform the following operations on images: image enhancement, and thresholding on a given gray scale image.	2	Apply CO3
 7. Design and implementation of Low pass IIR filter to meet the desired specifications and test the filter with a speech/audio file. Plot the spectrum of audio signal before and after filtering 	2	Apply CO4
 Design and implementation of Low pass FIR filter to meet the desired specifications and test the filter with a speech/audio file. Plot the spectrum of audio signal before and after filtering 	2	Apply CO4
9. Checking Linearity/Non-Linearity of a system using SIMULINK	2	Apply CO5
10. Checking Time variance/invariance of a system using SIMULINK	2	Apply CO5
Mini Project One mini project to be completed in 12 lab sessions including its evaluation Sample Mini Projects	on.	
1. Light Animation using Arduino and MATLAB.		
2. Fruit identification.		
3. Vehicle number plate detection.		
4. Simulation of power plant.		
 5. Hybrid electric vehicle modeling. 6. Image processing using MATLAB. 		
 7. Improve speech communication in the car. 		
8. Remove noise from the voice signal.		

Course Outco	mes: After completing the course, the students will be able to
22ECE146.1	Demonstrate sampling theorem and plot elementary waveforms in continuous and discrete time domains.
22ECE146.2	Analyze and plot the signals using DFT and convolution.
22ECE146.3	Perform basic operations on images.
22ECE146.4	Apply filtering techniques on audio/speech signals.
22ECE146.5	Build a system to verify the properties of a given system using SIMULINK.
22ECE146.6	Develop a real time application in speech/audio/image processing.

Reference Books

- 1. "Digital Signal Processing using MATLAB", Vinay K Ingle, John G Proakis, Fourth Edition, Cengage India Private Limited, 2017.
- 2. "Digital Signal Processing Using MATLAB for Students and Researchers", John W. Leis, Wiley, August 2011

Marks Distribution for Assessment:

PBL	CIA	SEA	CIA (50)			SEA Conduction: 100 M Reduced to: 50 M			
PDL	CIA S	SEA		I IA	II IA				
Conduction			r	Theory			30	30	
	50	50 50	50 50		Average of two tes	sts – 30 marks	Project Assessed for 100 Marks Reduced to 50 Marks		
np	duc		50 50	50	50 50 =	Lab	Weekly Assessment		Reduced to 50 Marks
Jon							(Record/Project) – 10 M	0 Marks	
\cup				Lab IA test – 10 Marks					
				Tot	tal – 50 Marks	Total – 50 Marks			

i) CIA: 50%

Theory	IA Test (Theory): 2 IA tests - each of 30 Marks	Average of 2 tests 30 Marks
Lab	Weekly Assessment – Lab Record/Project - 10 Marks Lab IA test (1) - 10 marks	20 Marks
	Total	50 Marks

ii) SEA: 50%

Project	Write-Up – 10 Marks Project Report – 25 Marks Presentation and Demonstration – 50 Marks Viva-Voce – 15 Marks	100 M Reduced to 50 M
	Tot	al 50 Marks