B.N.M. Institute of Technology

An Autonomous Institution under VTU

Department of Electrical and Electronics Engineering

III Semester Syllabus

B.N.M. Institute of Technology

Department of Mathematics Svllabus

Synabus Somostor: III						
Course	: Fourier Series, Transforms	and Statistical Te	ecnniq	lues		
Cour	rse Code: 22MAC131 (Commo	on to ECE, EEE	& ME	2)		
L:T:P:J	2:1:1:0	CIA	:	50		
Credits:	03	SEA	:	50		
Hours:	40	SEA Duration	:	03 Hour	'S	
Course Learning Objectives: 1	he students will be able to					
1 Develop knowledge of Statis	tical methods and curve fitting aris	ing in engineering.				
2 Have an insight into Laplace	transform, Fourier series, Fourier	ransforms and Z-tra	ansforr	ns.		
Module	e-1: Curve fitting & Statistical m	ethods			RBT	Hrs.
Examples from Engineering field	that require curve fitting and stati	stical methods.				
Curve Fitting: Curve fitting by t	he method of least squares-fitting t	he curves of the for	m: y =	ax+b,		
$y = ax^b$ and $y = ax^2 + bx + c$.					Apply	8
Statistical methods: Introductio	on to Moments, Skewness, kurtosi	s and problems. K	arl Pea	arson's	· · PP-J	Ŭ
coefficient of correlation and line	es of regression.					
Lab Component: Problems on c	rurve fitting and statistical methods				DDT	TT
Module-2: Laplace Transform			KBI	Hrs.		
Examples from Engineering field	that require Laplace transforms	domain Dafinition	These			
Laplace I ransform: Transforma	ation for time domain to frequency	domain. Definition	i and L			
transforms of elementary functions (statements only). Laplace transform of $e^{at} f(t)$, $t^n f(t)$, $\frac{f(t)}{t^n}$			$, \frac{f(l)}{l}$			
t			t	A	0	
$\int_{0}^{t} f(x) dx = \int_{0}^{n} f(x) (x - ix) = 0$				Арріу	ð	
, $\int_{a} f(t) dt$ and $f'(t)$ (without proof). Laplace transforms of Periodic functions, unit-step function			inction			
0 and unit impulse function						
Lab Component: Finding the La	place transforms of function					
Luo Component. I thang the La	odule-3: Inverse Lanlace Transfo	rm			RBT	Hrs.
Examples from Engineering field	that require inverse Laplace trans	forms				111.54
Definition and problems. Invers	e Laplace transform using convo	lution theorem (wi	thout	proof).		
Solution of linear differential ed	quations and simultaneous differe	ntial equations. Ar	oplicati	ions to	Apply	8
engineering problems.	1	1 1	1		11.5	
Lab Component: Problems on co	onvolution theorem					
	Module-4: Fourier Series				RBT	Hrs.
Examples from Engineering field	that require Fourier series					
Periodic functions, Introduction	to Fourier Series, Dirichlet's cond	ition. Fourier series	s of per	riodic		
functions with period 2π and arb	bitrary period. Half range Fourier s	sine and cosine seri	es. Pra	ctical	Apply	8
harmonic analysis over the interv	val $(0, 2l)$.					
Lab Component: Finding the Fo	urier series					
Module-	5: Fourier Transforms & Z - Tra	insforms			RBT	Hrs.
Examples from Engineering field	that require Fourier Transforms a	& Z -Transforms			<u> </u>	c
Fourier Transforms: Fourier	r transform and properties-proble	ems, Fourier sine	and c	cosine	Apply	8
transforms. Inverse Fourier transf	torms.					

Z-Transforms: Introduction to Z-transform, Z-transform of standard functions and properties	
(without proof). Initial value and final value theorems, problems.	
Lab Component: Finding the Fourier Transforms & Z-Transforms of a function	

Course Outcomes: After completing the course, the students will be able to

- CO 1: Make use of correlation and regression analysis to fit a suitable mathematical model for the statistical data.
- CO 2: Use Laplace transform to find the Transformation for time domain to frequency domain
- CO 3: Use inverse Laplace transform in solving differential equations arising in network analysis, control system and other fields of engineering
- CO 4: Demonstrate Fourier series to study the behavior of periodic functions and their applications in system communications, digital signal processing and field theory.
- CO 5: Make use of Fourier transform and Z-transform to illustrate discrete / continuous function arising in wave and heat propagation, signals and systems

Reference Books:

- 1. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10"Ed.(Reprint), 2016.
- 2. B.S. Grewal: "Higher Engineering Mathematics", Khanna Publishers, 44th Ed., 2017.
- 3. H. K. Dass, "Advanced Engineering Mathematics" S. Chand publication.
- 4. C.Ray Wylie, Louis C. Barrett : "Advanced Engineering Mathematics", 6" Edition, 2. McGraw-Hill Book Co., New York, 1995.
- 5. James Stewart : "Calculus Early Transcendentals", Cengage Learning India Private Ltd., 2017.
- 6. B.V. Ramana: "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill, 2010.
- 7. Srimanta Pal & Subobh C Bhunia: "Engineering Mathematics", Oxford University Press, 3 Reprint, 2016.
- 8. Gupta C. B., Singh S. R. and Mukesh Kumar: "Engineering Mathematics for Semester I & II", Mc-Graw Hill Education (India) Pvt. Ltd., 2015.

Web links and Video Lectures:

- 1. https://archive.nptel.ac.in/courses/111/106/111106111/
- 2. https://youtu.be/d7NF-_8vVv4
- 3. https://youtu.be/d7NF-_8vVv4
- 4. https://youtu.be/LGxE_yZYigI
- 5. https://youtu.be/GWDyEf0LC0o
- 6. https://youtu.be/sMYtHaSIXbU

B.N.M. Institute of Technology

Department of Electrical and Electronics Engineering

Semester: III

Course Name: Generation, Transmission and Distribution (PCC)			
Course Code: 22EEE132			
Teaching Hours/Week (L:T:P:J): (2:2:0:0)	CIA Marks:50		
Credits:3	SEA Marks·50		

SEA Duration: 03 hours

Credits:3
Hours:40

Course Learning Objectives:

- ✤ To understand the concepts of various methods of generation of power
- To understand the merits and demerits of hydroelectric power plant, thermal power plant and nuclear power plant
- \bullet To understand the conductor and insulator selection
- * To calculate the parameters of the transmission line for different configurations and assess the performance of the line
- ✤ To understand the basics of the AC distribution system

Pre-Requisites: Basic Electrical Engineering, Transmission and Distribution

Course Outcomes: After the completion of the course the students will be able to:

- * Explain the generation of electrical energy, its sources, conventional and non-conventional generation of power
- Explain the structure of power system & selection of conductors and string efficiency
- Calculate the line parameters for a single phase, three phase–symmetrical and unsymmetrical systems.
- ✤ Calculate the performance and efficiency of short and medium transmission lines
- Explain primary & secondary distribution system
- * Explain the impact of high-power transmission and distribution systems on society

Module-1: Power Generation	RBT	Hrs.
 Introduction: Importance of electricity, Generation of electrical energy, Sources of energy, Comparison of energy sources. Hydro-electric power station: Introduction, Advantages and disadvantages, Schematic arrangement, Selection of site, Constituents of plant – Hydraulic structures, Water turbine, Electrical equipment Steam power station: Introduction, Advantages and disadvantages, Schematic arrangement, Choice of site, Equipment of steam power station Nuclear power station: Introduction, Advantages and disadvantages, Schematic arrangement - Nuclear reactor, Heat exchanger, Steam turbine, Alternator, Selection of site Reference Book 1 : Chapters 1, 2 		8
Module-2: Electrical Supply System	RBT	Hrs.
 Electrical Supply System: Layout, Advantages of HV transmission, Elements of a transmission line, Conductors –Aluminium Conductor steel reinforced (ACSR), Gap type thermal resistant aluminium alloy conductor steel reinforced (GTACSR), High Tension Low Sag (HTLS) conductor, Bundle conductor and its advantages. Importance of sag, Sag calculation – supports at same and different levels, Overhead line Insulators: A brief introduction to types of insulators, material used- porcelain, toughened glass and polymer (composite). Potential distribution over suspension insulator string, String efficiency, Methods of increasing string efficiency (Description only). Reference Book 1 : Chapters 8 	Apply	8

Module-3: Transmission Line Parameters	RBT	Hrs.
Introduction to line parameters- resistance, inductance and capacitance. Calculation of inductance of single phase and three phase lines with equilateral spacing, unsymmetrical spacing, double circuit and transposed lines. Inductance of composite – conductors, geometric mean radius (GMR) and geometric mean distance (GMD). Calculation of capacitance of single phase and three phase lines with equilateral spacing, unsymmetrical spacing, double circuit and transposed lines, geometric mean radius (GMR) and geometric mean distance (GMD). Calculation of capacitance of single phase and three phase lines with equilateral spacing, unsymmetrical spacing, double circuit and transposed lines, geometric mean radius (GMR) and geometric mean distance (GMD). Advantages of single circuit and double circuit lines. Reference Book 2 : Part 2 Chapter 2	Apply	8
Module-4: Performance of Transmission Lines and Underground Cables	RBT	Hrs.
 Performance of Lines: Classification of lines – short, medium and long. Current & voltage relations, line regulation, transmission efficiency, and ABCD constants in short and medium-length lines, Ferranti effect on long-length lines. Underground Cables: Introduction, construction features, insulating materials for cables, classification of cables – belted cables, screened cables and pressure cables, comparison between AC and DC cables and limitations of cable. Reference Book 1: Chapters 10, 11 	Apply	8
Module-5: Distribution Systems	RBT	Hrs.
 Distribution: Primary AC distribution systems – Radial feeders, parallel feeders, loop feeders and interconnected network system, Methods of solving AC distribution problems, Secondary AC distribution systems – Three phase 4 wire system, Effect of disconnection of neutral in a 3 phase four wire system. Reference Book 1: Chapters 12, 14 	Understand	8

Reference Books:

1. Principles of Power System, V.K. Mehta & Rohit Mehta, S. Chand Technical Publications.

2. A Course in Electrical Power, Soni Gupta & Bhatnagar Dhanpat Rai & Sons. 1st Edition, 2013

B.N.M. Institute of Technology

Department of Electrical and Electronics Engineering

Semester: III	0	0	
Course Name: Notwork Analysis (PCC)			
Course Code: 22EEE133			
Teaching Hours/Week (L:T:P:J): 2:2:0:0	[A: 50		
Credits: 3	EA: 50		
Hours: 40 Hrs SF	EA Duratio	on: 03 Hou	rs
Course Objectives:			
 To explain about the various elements used in electrical circuits. 			
✤ To explain the use of network reduction and network solution methods for the ana	alysis of elec	ctric circuits.	
 To apply the concept of network theorems for the solution of electric circuits. 			
✤ To explain the concept of the time domain approach to analyze the initial and fin	nal behavior	ur of electric	circuit
elements.			
 To explain the simplified Laplace transformation approach to analyze the behavior 	our of electri	c circuits.	
Pre-requisites: KVL, KCL, series-parallel reduction of circuits with R, L, and C eleme	ents, comple	ex variable op	perations,
linear algebra, solution of differential equations, Laplace transforms and inverse Lapl	ace transfor	ms	
Course outcomes: At the end of the course the student will be able to			
Analyse the given circuit (both single phase and three phases) using network red	luction & o	ther network	solution
methods.			
Solve the given electric circuit by applying the concept of network theorems.			
Analyse the behaviour of electrical network under initial, steady state condition and	nd variation	of parameter	rs.
 Analyse electric circuits using Laplace transformations. 			
 Model the given two port networks in terms of network parameters (Z, Y, h and T 	.)		
Module-1: Fundamentals of Network Theory		RBT	Hrs
Basic network elements, classification, representation. Network reduction using	Source		
transformation, and source shifting. Star-delta transformations, network reduction usi	ing star-		
delta transformations. Applications of KVL and KCL for Mesh current and node	voltage	Apply	
analysis of AC and DC electric circuits with and without control sources. Super loop an	nd super		8
node methods. Illustrative examples			
Module–2: Network Theorems		RBT	Hrs
Integro-differential equations on loop and node basis of circuits with R, L and C. Du	uality in		
electric networks.		Annly	
Superposition theorem, Thevenin's and Norton's theorems, Millman's theorem, and M	aximum	Арріу	8
power transfer theorem. Illustrative examples (dependent sources excluded).			
Module–3: Initial conditions and Resonance in networks.		RBT	Hrs
Initial conditions			
Initial conditions, definition and its importance in networks, evaluation of initial cond	itions in		
R-L, R-C, and R-L-C series and parallel circuits excited by DC sources. Interpret	ation of		
derivatives and waveform prediction, illustrative examples.		Apply	
Resonance- Meaning, importance, definitions of terminologies, series resonance, n	resonant		
frequency, Quality factor, half power frequencies, bandwidth of series and parallel n	resonant		
circuits, illustrative examples.			
Module–4: Laplace transform		RBT	Hrs
Definition, importance, and applications. Laplace transforms of various parameters,	Standard		Q
input signals (impulse, step, ramp, and parabolic). Inverse Laplace transformation	ıs, Partial	Apply	ð
fraction expansions. Applications of Laplace transformations for Analysis of simple I	R-L, R-C,	** *	

and R-L-C series parallel circuits excited by DC sources. Initial value and final value theorems,		
illustrative examples.		
Module-5: Two port Network parameters and Three phase circuits.	RBT	Hrs
Two port Network parameters		
Two-port network modeling through Z, Y, h and T-parameters. Relationship between the		
network parameters. Illustrative examples of evaluating the parameters of two-port networks		
containing independent and controlled sources.	Apply	8
Three-phase circuits: Three-phase systems - three-phase 3-wire and 4-wire systems,		
unbalanced star and delta connected loads, evaluation of current, powers in unbalanced star and		
delta connected loads excited by balanced three-phase supply, illustrative examples.		

Reference Books:

- 1. Network Analysis. Prof.K.Chennavenkatesh, Dr. Ganesh Rao, Publisher-Sanguine Technical Publishers.
- 2. Circuit Theory (Analysis and synthesis), A. Chakrabharathi, Dhanpat rai @co.(pvt.) Ltd, 6th ed. 2010.
- 3. Electric Circuits, Joseph A Edminister & Mahmood Nahavi, 5th ed. Schaum's outlines, McGraw Hill.

B.N.M. Institute of Technology

Department of Electrical and Electronics Engineering

Semester: III	8	8	
Transformers and Induction Moto	Transformers and Induction Motors (PCI)		
Course Code: 22EEE134			
Teaching Hours/Week (L:T:P:J): (3:0:2:0)	CIE Marks: 5	50	
Credits: 4	SEE Marks: 5	50	
Hours: 40 Hours Theory+ 10 Lab Sessions	SEE Duration	: 03 Hours	
Course Learning Objectives:			
To understand the working of transformer, auto-transformer, and IM			
✤ To understand the performance of single-phase & three phase transformation	mer		
✤ To understand the characteristics, starting methods, speed control of t	hree phase IMs		
To understand the performance of three phase IMs and single-phase I	M		
Requisites: Electromagnetic Induction, Single phase and three phase AC	circuits, KCL & K	XVL	
Course Outcomes: After the completion of the course the students will b	e able to:		
 Explain the construction and working of single-phase & 3-phase trans 	former, auto-tran	sformer.	
 Determine the performance parameters of single-phase transformers at 	nd three-phase tra	nsformers throug	gh load and
no-load tests			
 Explain the construction, working, and types of 3-phase & single-pha 	se Induction moto	or D	
 Explain the performance characteristics, starting methods and speed c 	ontrol of three ph	ase IMs	
• Determine the performance parameters and characteristics of Induction Motor through load and no-load test.			test.
Module-1: Single-Phase Transformers		RBT	Hrs
Single-Phase Transformers: Necessity of transformer, principle of oper	ation, Types and		
construction, EMF equation, Operation of practical transformer under no-	load and on-load	Apply	8
with phasor diagrams, equivalent circuit, Transformer losses, efficiency, a	nd condition for		
Madula 2. Tasting and Davallal an exaction of Single phase transformers		DDT	
Module-2: Testing and Parallel operation of Single-phase transformers		KR I	Hrs
Testing: Open circuit and short circuit tests, polarity test, Sumpner's test	t, and separation		
Of hysteresis and eddy current losses, illustrative examples	. Single phase	Annly	0 hours
and three phase. Load sharing in access of similar and dissimilar transform	n– Single phase	Арріу	8 nours
examples	ners, mustrative		
Modulo 2. Three phase transformers and Auto Transform	2045	DDT	Uma
The first of the f		KDI	1115
Inree-phase Iransformers: Introduction, Constructional features	of three-phase		
transformers. Choice between single unit three-phase transformer and	a bank of three		
delta/delta star/delta and vac/vae choice of connections. Tertiery	winding Soatt		
connection for three phase to two phase conversion. Illustrative examples	winding, Scott	Apply	8 hours
Autotransformers: Single phase and three phase auto transformer savi	ng of conductor		
material comparison of auto transformer and two winding transformer	mer Illustrative		
examples	mer, mustrative		
Module-4: Three phase Induction Motor		RBT	Hrs
Three phase Induction Mator: Concept and generation of rotating	magnetic field	11	
Principle of operation construction classification and types: squirrel-case	e slin-ring Slin		
and its significance. Torque equation, torque-slip characteristics Star	ting torque and	Apply	8 hours
Maximum torque, Equivalent circuit, Losses and efficiency, power flow	diagram, Phasor		

diagran Applic	m of induction motor on no load and loaded conditions. (numerical as applicable), rations			
Module-5: Testing, Starters and Speed Control of 3-phase IM & Single-Phase IM		RBT	Hrs	
Tests on three phase Induction Motor : Brake test, No-load and blocked rotor tests, circle diagram, Performance of the motor from the equivalent circuit. Illustrative examples Starters and Speed control for 3-phase IMs: Need for starter. Direct on line (DOL), Star-Delta and autotransformer starting, Rotor resistance starting. Speed control by V/f control (qualitative) and rotor resistance control		Apply	8 hours	
Constr	uction and operation of split-phase, capacitor start and capacitor run and shaded pole			
Labor	atory Experiments:			
 Copen Circuit and Short circuit tests on single phase transformer and predetermination of (i) Efficiency and regulation (ii) Calculation of parameters of equivalent circuit. 				
2. Sumpner's test on transformers and determination of individual transformer efficiency				
3. Polarity test and Parallel operation of two dissimilar single-phase transformers and determination of loa			on of load	
sharing and analytical verification using the short circuit test data.				
4.	4. Scott connection with balanced and unbalanced loads			
5.	5. Separation of hysteresis and eddy current losses in single phase transformer.			
6.	6. Connection of 3 single-phase transformers in (a) star – delta, (b) delta – delta and (c) V – V (open delta) and			
	determination of efficiency and regulation under balanced resistive load.			
7.	Load test on three phase induction motor.			
8.	No load and Blocked rotor tests on three phase induction motor to draw the circ	rcle diagram and	d hence to	
	determine (i) the performance parameters at different load conditions and (ii) obtain	n the equivalent	circuit.	
9.	Load test on single-phase induction motor			
10	. Performance characteristics of Induction Generator			
Refere	ence Books			
	lectrical Machinery, J.B. Gupta, S.K. Kataria & Sons			
2. E	lectric Machines, DP Kothari, I J Nagrath, IMH			
5. Electrical Machines, Ashiaq Hussain, Dhanpai Kai & Co. Publications				
4. E Wah li	incurical Technology, BL Theraja and AK Theraja			
NPTE	I. Courses			
https://	//nptel.ac.in/courses/108106071			

https://archive.nptel.ac.in/courses/108/105/108105155/

https://nptel.ac.in/courses/108/105/108105135/ https://archive.nptel.ac.in/courses/108/105/108105131/ https://archive.nptel.ac.in/courses/108/102/108102146/

B.N.M. Institute of Technology

Department of Electrical and Electronics Engineering

	8	8		
Semester: III				
Analog and Digital Electronic Circuits (PCI)				
Course Code: 22EEE135				
Teaching Hours/Week (L:T:P:J): (3:0:2:0)	CIE Marks: 50			
Credits: 4	SEE Marks: 50			
Hours: 40 hours Theory+ 10 lab sessions	SEE Duration: 03 Hours			
Course Learning Objectives: The students will be able to				
 Understand non-linear application of op-amp and realize function 	n generator using op-am	ıp.		
 Design and analyse Butterworth filter circuit 		1		
◆ Use D/A and A/D convertors, Linear ICs 555, Voltage regulators	for Analog circuit application	ıs		
 Implement Boolean switching functions after using K-map to sin 	nplify equations			
 Use combinational circuits like Code converters, multiplexers, decoders 				
✤ Use flip flops to realize registers, and counters				
Pre-Requisites: Course on Basic Electronics				
Course outcomes: At the end of the course the student will be able	to			
CO1: Implement filters, waveform generators and non-linear application	ations of Op-Amp for a given	requirement	,	
CO2: Use Timer IC, Regulators, D/A and A/D converters for a giver	n application	_		
CO3: Simplify given Boolean expression using k-map				
CO4: Build combinational circuits for code conversion, multiplexer,	decoder, and encoder.			
CO5: Build sequential circuits using flip flops for registers and coun	iter operations			
Module-1: Introduction to Digital Circuits and Combinational circuits		RBT	Hrs	
Review of Digital basics and logic gates, Switching equations, Cano	nical form of SOP and POS,	S,		
Simplification and realization of Digital switching equations using K-map [3 and 4 variables], Apply Design Code convertors [BCD to Excess-3, BCD to 7-segment code]			8	
Module-2: Combinational circuits and Introduction to	sequential circuits	RBT	Hrs	
Multiplexers (Mux): Implementation of 4:1, 8:1 Mux, Realization	of Boolean expression using			
Mux.				
Decoders: Implementation of 2:4, 3:8 decoders, Realizing higher	order decoder using lower			
order decoders, realization of Boolean expression using Decoders.				
Encoders: Implementation of 4:2, 8:3 encoders		Apply	8	
Flip Flops: Basic bistable element, Gated SR Latch, Need for Edge triggered flip flops, Edge				
triggered D-flip flop, JK-flip flops and T-flip flops [Block diagram	n and Functional truth table			
only], Characteristic equation of flip flops, Excitation table of flip f	lops, Interconversion of flip			
flops.				
Module-3: Sequential circuits		RBT	Hrs	
Registers: Types of registers, Shift registers, 4-bit PIPO, PISO, SISC	O, SIPO registers, Universal			
shift registers,			0	
Counters: Binary ripple counters, Synchronous Binary counters, Co	ounters based on Registers,	Apply	8	
Design of Synchronous counters				
Module-4: Operational Amplifier Applicat	tions			
Review of op-amp parameters				
Op-Amp Non-Linear Applications: ZCD, Schmitt Trigger [Analys	sis and Design]			
Waveform generation: Generation of Square wave using Astable circuit [Analysis and Design],			8	
Phase shift oscillator, Triangular wave generation		• •hhià	0	
Filters: Advantage of active filter, First order Butterworth Low pass, High pass,				
Analysis and Design]				
Module-5: Linear IC applications		RBT	Hrs	

 D/A and A/D convertors: Introduction to D/A and A/D convertors, R-2R D/A convertor, Successive approximation A/D convertors 555 Timer IC: Internal Block diagram of 555, working of 555 as astable and monostable circuit. Applications of monostable and astable circuits[Analysis and Design] Voltage regulators: Fixed voltage regulators using 78XX and 79XX IC, Adjustable voltage regulators using LM317 	Apply	8
--	-------	---

Reference Books

- 1. Op-Amps and Linear Integrated Circuits, by Ramakant A.Gayakwad, 4th edition, PHI, 2012.
- 2. Digital Design, by M.Morris Mano, Michael D.Ciletti, 5th edition, Pearson Education Inc.
- 3. Digital Principles and Design, Donald D. Givone, TMH Edition 2002
- 4. Charles H Roth JR, Larry L Kimney, "Fundamentals of Logic Design", Cengage Learning, 5th edn.
- 5. S. Shalivahanan et.al., "Linear Integrated Circuits", McH, 2nd edn, 2014

Lab Experiments (10 Lab sessions)			
Sl. No.	Experiments		
1	Design and realization of 1st order Butterworth High pass and low pass filter		
2	Design and realization of Schmitt trigger circuit of a given UTP and LTP		
3	Design and realization of square wave generation using 555 Timer IC		
4	Realization of R-2R ladder D/A convertor		
5	Realization of op-amp based function generator for Square and Triangular wave generation.		
6	Design and realization of Op-Amp based Sine wave generator.		
7	Simplification and realization of a given Boolean expression using logic gates		
8	Realization of 4-bit adder/subtractor using Adder IC		
9	Realization of 3-bit mod-N counter using counter IC		
10	Realization of Johnson and Ring counter		

B.N.M. Institute of Technology

Department of Electrical and Electronics Engineering

	Samactor: III	<u> </u>			
	Course Name: Python Programming for Elect	trical Engineers (PBL)			
	Course Code: 22EEE13	6 6			
Teach	ning Hours/Week (L:T:P:J): (0:0:2:2)	CIE Marks: 50			
Cred	its: 2	SEE Marks: 50			
Hour	rs: 30	SEE Duration: 03 Hours			
Cour	se objectives: The students will be able to				
* T	To know the basics of algorithmic problem solving using python				
* T	To develop Python programs with conditionals, loops, and functi	ons.			
* T	Co use Python data structures — lists, tuples, dictionaries.				
* T	o write Python programs for problem solving and analysis in the	e field of Electrical Engineering.			
T *	To develop programs using Python for embedded applications				
Pre-r	equisites:				
Func	damental knowledge of computer systems, Basic knowledge (of C Programming, Basic Electrical Engineering,			
Elec	Course outcomes: At the and of the course the student with	Il be able to:			
	Develop applications using Python Programming	ii de adie to:			
*	Develop programs with different data types utilizing loops dec	ision-making statements and functions			
*	Evaluate the characteristics of the machines and transformer pa	rameters using Python.			
*	Develop a python program for linear circuits and digital circuit	s.			
*	Develop a Python program to interface sensors, actuators with a	a Python supported microcontroller board.			
*	Communicate effectively about the chosen problem				
*	Write technical report for the chosen problem				
SI. No	Experiments				
	Installation Guide, Operators, Datatypes, and Basic I/P a	nd O/P operations.			
1	1. Write a python program to convert temperature to and fi	rom Celsius to Fahrenheit.			
1	2. Write a Python program to compute the distance betwee	n two points taking input from the user.			
	Decision Making and Loop Statements, strings				
	1. Write a program to create, concatenate and print a string	and access substring from a given string.			
2	2. Write a python program to print prime numbers less that	n 50.			
	3. Develop a python code to design and realize Combination	onal/Sequential logic circuits.			
	Lists, Tuples, Dictionaries.				
	1. Write a python program to create a list and perform the	following methods 1) insert() 2) remove()			
	3) append() 4) len() 5) pop() 6) clear()				
3	2. Write a program to Create a tuple and perform the follo	wing methods 1) Add items 2) len() 3)check			
	for item in tuple 4)Access items				
	3. Write a program to create a dictionary and apply the fol	lowing methods 1) Print the dictionary items			
2) access items 3) use get() 4)change values 5) use len()					
	F Unctions, Modules	Each function shouldn't avceed one line			
4	2. Write a Python program to define a module to find Fibo	nacci Numbers and import the module to another			
	program.				
	Error Handling, Numpy and Matplotlib modules				
5	1. Write a program in Python to handle user-defined except	otion for given problem.			
	2. Write a python program to perform AC Analysis.				

6	Introduction to PySpice (Python, Installation Guide) Write a program to perform DC Nodal Analysis using Pyspice(Python)
7	Write a program to plot the Characteristics of the Induction Motor
8	Write a python code plot the efficiency of Transformer at different loads.
	Introduction to RaspberryPi, Installation Guide
9	Write a program in Python to send digital data on Raspberry pi GPIO pins to blink LED, Fade an LED and develop a simple traffic light system.
10	Connect the Digital/Analog I/O module and write a program in python to interface the various Analog Sensors such as temperature sensors, Motion sensors.
11	Write a python script to control the speed of Servomotor.
12	Speed control of DC motor using Raspberry-pi and python

Sl. No.	List of indicative Projects
1	Electricity Bill Management System using python
2	Smart Surveillance Monitoring System Using Raspberry PI and PIR Sensor:
3	Temperature based DC Fan Control
4	Autonomous Lane Detection Car Using Raspberry Pi and python
5	Raspberry Pi-based Automated Street Lighting System
6	Raspberry Pi based Battery monitoring system
7	Smart Energy meter using Raspberry pi and IoT
8	Text to Speech Converter using Python
9	Create an analog clock using python.
10	Power theft identification and alerting system using Raspberry Pi

Ref	Reference Book					
1.	Think Python: How to ThinkLike a	Allen B. Downey	Green Tea Press	2 nd Edition, 2015		
	Computer Scientist					
2.	"Automate the Boring Stuff with	Al Sweigart	Starch Press	1 st Edition, 2015		
	Python"	-				
3	"Python programming using problem	Reema Thareja	Oxford university press	1 st Edition, 2018		
	solving approach"					
5	Introduction to programming	Y. Daniel Liang	Pearson Publications	1st Edition,2017.		
	using Python,					
6	Python for Science and Engineering	Hans-etter	https://www.halvorsen.blog/do	August,2020		
		Halvorsen	cuments/programming/python/			
7	Programming the Raspberry Pi,	Simon Monk	McGraw Hill	Third Edition		
	Getting Started with Python					
W	eb links and Video Lectures:					
ht	tps://www.learnbyexample.org/python/					
ht	https://www.learnpython.org/					
https://pythontutor.com/visualize.html#mode=edit						
ht	https://pyspice.fabrice-salvaire.fr/releases/v1.3/examples/index.html					
ht	https://nptel.ac.in/courses/106106145					
ht	tps://www.w3schools.com/python/					

B.N.M. Institute of Technology

An Autonomous Institution under VTU

	Semester: III				
COURSE: CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS					
Course	Code: 22CIP137	L:T:P:J: 0:2:0:0	CIE Marks: 100		
Credits	•	1	SEE Marks:		
Hours:		15 hrs	SEE Duration:		
Course	Learning Objectives: Th	ne students will be able to			
1	know the fundamental period institutions, fundamental ri	olitical codes, structure, procedures, ghts, directive principles, and the duti	, powers, and duties of citizens	of Indian	government
2	know the Indian top civil s	ervice positions and the exams conduc	cted by UPSC and SPSC	C for the sa	me
3	Understand engineering responsibilities towards so	ethics and their responsibilities; i ciety.	identify their individu	al roles	and ethical
	MODULE 1:	Introduction to Indian Constitution	l	RBT	Hrs
The Necessity of the Constitution, Introduction to Indian Constitution, The Making of the Constitution, Role of Constituent Assembly, Preamble and Salient features of the Constitution of India, Fundamental Rights and its Restriction and limitations in different complex situations, Directive Principles of State Policy, Fundamental Duties.			1,2,3	3	
MODULE 2: System of Government, Central Government, State Government			te Government	RBT	Hrs
System of Government-Parliamentary System, Federal System. Central Government-Basic details, Powers and Functions of Union Executive. Parliament- LS and RS (Composition, Duration, Membership and Presiding officers of Parliament and their functions). Leaders in Parliament (Leader of the House and Leader of the Opposition). Sessions of Parliament (Summoning, Adjournment, Adjournment Sine Die, Prorogation, Dissolution). Quorum of House, Language in Parliament, Joint sitting of two Houses. State Government- Basic details, Powers and Functions of State Executive. State Legislature (Composition, Duration, Membership and Presiding officers of Parliament and their functions)			1,2,3	3	
	MODULE 3: Judician	ry, Amendments and Emergency Pr	ovisions	RBT	Hrs
Supreme Court, High Court, Judicial Review, Judicial Activism. Methods in Constitutional Amendments (How and Why). Types of Emergencies and its Consequences, Recent Amendments to the Constitution.			1,2,3	3	
	MODULE 4: Elections,	Constitutional and Non Constitutio	nal Bodies	RBT	Hrs
Elections- Election Commission of India, Electoral Process. Constitutional Bodies- Election Commission, Union Public Service Commission, State Public Service Commission, Goods and Service Tax Council. Non Constitutional Bodies- Central Information Commission, State Information Commission.			1,2,3	3	
MODULE 5: Professional Ethics				RBT	Hrs
Scope & A Ethics, Re Engineerin Rights)	Aims of Engineering & Prof sponsibilities in Engineering ng, Risks, Safety and liability	essional Ethics, Positive and Negative g, the impediments to Responsibility. T y in Engineering, Clash of Ethics, IPRs	Faces of Engineering Frust and Reliability in (Intellectual Property	1,2,3	3

Course outcome: On completion of this course, students will be able to,

CO1: Have constitutional knowledge and legal literacy.

CO2: Have knowledge on All India Services and State Civil Services.

CO3: Understand Engineering and Professional Ethics and responsibilities of Engineers.

Reference Books Suggested Learning Resources:

1.**Title of the Book - Indian Polity** Name of the Author - M Lakshmikanth Name of the Publisher-Mc Graw Hill Education Edition and Year- 2019

2.Title of the Book - Engineering Ethics Name of the Authors - M. Govindarajan, S.Natarajan, V.S. Senthilkumar Name of the Publisher- Prentice-Hall Edition and Year-2004

3. Durga Das Basu (DD Basu): "Introduction to the Constitution on India", (Students Edition.)Prentice –Hall EEE, 19th / 20th Edn., (Latest Edition) or 2008.

4. Shubham Singles, Charles E. Haries, and Et al : "Constitution of India and Professional Ethics" by Cengage

Learning India Private Limited, Latest Edition – 2018.

5. M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice –Hall of IndiaPvt. Ltd. New Delhi, 2004

6. M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.

7. Latest Publications of NHRC - Indian Institute of Human Rights, New Delhi.

Web Links and Video Lectures www.unacademy.com/lesson/future-

perfect-tense/YQ9NSNQZ <u>https://successesacademy</u>

B.N.M. Institute of Technology An Autonomous Institution under VTU

		Semester: III	
		COURSE: Soft Sk	ill-1
Course Code: 22SFT138 L:T:P:J: 0:2:0:0 CIA Marks: 100		CIA Marks: 100	
Credits	:	1	SEA Marks:
Hours:		: 15 hrs SEE Duration:	
Course	Learning Objectives	The students will be able	
1	To help students und	erstand their strengths and weakn	iess.
2	To develop analytical and creative ability to solve problems individually or as a team.		
3	To make students inc	lustry ready through practice of c	orporate etiquettes.
4	To enhance public sp	eaking and presentation skills.	

Course Outcomes: At the end of the course the student will be able to:

CO1	Understand their strength and weaknesses.
CO2	Develop analytical and creative ability to solve problems.
CO3	Identify themselves as industry ready through the practice of corporate etiquettes.
CO4	Enhance public speaking and presentation skills.
CO5	Build team collaboration by working towards shared goals.

Module	Contents of the Module	Hours	Cos
No.			
1	Module-1 Understanding and Managing Self		
	Self-Awareness, Self-Management, Anger Management, Time management,	8	1 &2
	Change management.		
	Vision and goal setting - Diff between vision and goal, smart, stretched goal		
	concept, case studies		
	Knowledge, Skill, Attitude		
	Personality analysis using Big 5 personality test		
	Critical Thinking, Problem solving, Creativity and innovation		
	Integrity, ethics, values		
2	Module -2 Corporate etiquettes and Mannerism		
	Introduction to Etiquette and Mannerism, Personal Etiquette, Grooming	6	3
	etiquettes- professional styling, Body & personality styling, Video Interview		
	Etiquettes, Personal Interview Etiquettes Effective meeting skills.		
	Workplace behaviour, Personal interview		
3	Module -3 Public Speaking and presentation skills		
	Introduction to public speaking, making ideas, illustrating and delivering ideas,		
	overcoming fear of public speaking and developing great delivery.	6	4
	Advanced Business presentation skills, PowerPoint presentation, Group		
	discussion		
4	Module -4 Team Work	4	5
	Interpersonal skills, group work vs team work		

Mapping of Course Outcomes with Programme Outcomes:

CO1	PO8	PO9	PO10	PO11
CO1	3	3		
CO2		3		3
CO3	3	3		3
CO4		3	3	
CO5			3	3

MOOC Course:

Communicate with impact - <u>https://www.coursera.org/learn/communicate-with-impact</u> **Leading Diverse Teams -** <u>https://www.coursera.org/learn/leading-diverse-teams</u>

Practical component:

- 1. Mock GD and interview may be conducted at the end of the course to check their confidence. Students can prepare their SWOT analysis and present the same.
- 2. The students are to be involved in various activities and games such as Just a Minute or Pick and speak to demonstrate each topic.

B.N.M. Institute of Technology

An Autonomous Institution under VTU

Department of Electrical and Electronics Engineering

Semester: III				
Course Name: Innovative Project Lab Course Code: 22EEE139				
Teaching Hours/Week (L:T:P:J): (0:0:0:2)	CIA: 100			
Credits: 1	SEA: -			
Hours: 15 hrs.	SEA Duration: -			
 Course Objectives: To encourage independent learning and innovative attitude of the students To inspire team working To expand Intellectual capacity, Credibility and Judgement. To develop Interactive attitude, Communication skills, Time management & Presentation skills. 				
All the students registered to II year of BE shall have to take up Innovative during III semester. Semester End Assessment will be conducted and the prescribed credit will be included.				
 Course Outcomes: At the end of the course the student will be able to: Demonstrate a sound technical knowledge of their selected project topic. Undertake problem identification, formulation and solution. 				

Design engineering solutions to complex problems utilizing a systems approach.

* Communicate with engineers and the community at large in written or oral forms.

B.N.M. Institute of Technology

An Autonomous Institution under VTU

Department of Electrical and Electronics Engineering

IV Semester Syllabus

B.N.M. Institute of Technology

Department of Mathematics

Semester: IV				
Course: Complex Analysis, Probability and Random Process				
Course Code: 22MAC141 (Common to ECE, EEE & ME)				
Teaching Hours/ week (L:1:F:J): (5:0:0:0) CIA: 50 Cradits: 03 SEA: 50				
Hours: 40	SEA Duration: 03 Hours			
Course Learning Objectives: The students will be able to1Provide an insight into applications of complex variaquantum mechanics, heat conduction and field theory.	bles and conformal mapping arisin	ng in potenti	al theory,	
² Develop the knowledge of probability, joint probability processing, design engineering and microwave engineer	distribution and Random process oc ring.	curring in dig	gital signal	
Module-1: Complex Analys	is	RBT	Hrs	
Examples from Engineering field that require complex analysis	sis.			
Review of function of a complex variable, limits, continui functions. Cauchy-Riemann equations in Cartesian and polar Riemann equations (only statement), construction of analyti method.	ty and differentiability. Analytic forms. Consequences of Cauchy- c function using Milne-Thomson	Apply	8	
Lab Component: problems on construction of analytic func	tions			
Module-2: Conformal Mapping & Comp	blex Integration	RBT	Hrs	
Examples from Engineering field that require Conformal Ma	pping & Complex Integration.			
Conformal mapping: Introduction, discussion of transforma	tions: $w = e^{z}, w = z^{2}, w = z + \frac{1}{2}$			
$(z \neq 0)$ and bilinear transformations. Complex integration: Introduction to complex integration, Cauchy's theorem and Cauchy's integral formula. Lab Component: problems on Cauchy's integral formula		Apply	8	
Module-3: Probability Distributions & Joint probability distribution			Hrs	
Examples from Engineering field that require Probability and Joint probability distribution Probability Distributions: Review of basic probability theory. Discrete and continuous Random variables, probability mass/density functions (definitions only). Binomial, Poisson, exponential and normal distributions (without proof). Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance and correlation. Lab Component: Problems on binomial, Poisson, exponential and normal distributions		Apply	8	
Module-4:Markov Chain & Sampling Theory			Hrs	
Examples from Engineering field that require Markov Chain Markov Chain: Introduction to Stochastic process, Probab Regular stochastic matrices, Markov Chains, Higher tra distribution of Regular Markov chains and absorbing states, I Sampling Theory: Introduction to sampling theory, Testing o confidence limits, test of significance of mean and difference test of significance of small samples-Student's t- distribution Lab Component: Problems on Markovian processes and, Sa	and Sampling Theory ility vectors, Stochastic matrices, unsition probabilities, Stationary Markovian processes. f hypothesis, level of significance, of means for large samples-z-test, , Goodness of fit-Chi-square test. ampling Theory	Apply	8	

Module-5: Random Process		RBT	Hrs
Exampl	es from Engineering field that require random process		
Introduc			
stationa	stationary, auto-correlation function, Ergodicity, Spectral representation, Weiner-Kinchine		
mean	theorem, Poisson process, pure birth process, birth and death process with a constant rate, death		
Lab Co	Sumponent: Problems on Poisson process, pure birth process, birth and death process		
Course	e Outcomes: After completing the course, the students will be able to		
CO1:	Use the concepts of analytic function and complex potentials to solve the problems ariselectromagnetic field theory.	sing in	
CO2:	CO2: Utilize conformal mapping and complex integral arising in aerofoil theory, fluid flow visualization and image processing.		
CO3:	CO3: Apply discrete and continuous probability and joint probability distributions in analyzing the probability models arising in engineering field.		
CO4:	Use Markov chain in prediction of future events and demonstrate the validity of testing	g the hypothe	sis.
CO5:	Use the concepts of random process in dealing with signals in engineering problems.		
Referen	ice Books:		
1. E.K	reyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition(Reprin	nt), 2016.	
2. B. S	. Grewal: Higher Engineering Mathematics, Khanna Publishers, 44th Edition, 2017.		

- 3. S. D. Sharma : "Operations Research", KedarNath Ram Nath & Co. Meerut, 2014.
- 4. T. Veerarajan : "Probability, Statistics and Random processes", McGraw Hill Education (India) Private Limited, Third edition, Nineteenth reprint 2017.
- 5. C. Ray Wylie, Louis C. Barrett : "Advanced Engineering Mathematics", 6th Edition, 2. McGraw-Hill Book Co., New York, 1995.
- 6. James Stewart : Calculus Early Transcendental, Cengage Learning India Private Ltd., 2017.
- 7. B. V. Ramana: "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill, 2010.
- 8. Srimanta Pal & Subobh C. Bhunia: "Engineering Mathematics", Oxford University Press, 3rd Reprint, 2016.

Web links and Video Lectures:

- 1. https://nptel.ac.in/courses/111106141
- 2. https://www.digimat.in/nptel/courses/video/111107119/L29.html
- 3. https://archive.nptel.ac.in/courses/122/107/122107036/
- 4. https://archive.nptel.ac.in/courses/105/105/105105045/
- 5. https://archive.nptel.ac.in/courses/111/102/111102014/
- 6. https://archive.nptel.ac.in/courses/111/103/111103159/

B.N.M. Institute of Technology

Department of Electrical and Electronics Engineering

Semester: IV

Course Name: Linear Control Systems (PCC)

Course Code: 22EEE142

Teaching Hours/Week (L:T:P:J): (2:2:0:0)	CIA Marks: 50
Credits: 3	SEA Marks: 50
Hours: 40	SEA Duration: 03 Hours

Course Learning Objectives:

- To understand modelling of physical systems and obtain the transfer function through block diagrams and signal flow graphs.
- To understand time domain response and estimate transient parameters and errors in steady state conditions.
- To use Routh-Hurwitz and Root locus techniques to determine stability of linear systems.
- To understand the difference between time domain and frequency domain specifications, analysis of systems in frequency domain.
- ✤ To use the Bode technique to determine the stability of linear systems.

Pre-Requisites: Knowledge of network duality, Laplace transformations theory and applications. Differential equations. Matrix algebra

Course Outcomes: After the completion of the course the students will be able to:

- Develop electrical analogous circuits for mechanical systems and transfer function for servomotors.
- Develop transfer function using block diagram reduction and signal flow graph techniques.
- Obtain the transient and steady state parameters for a 2nd order system subjected to step input.

• Determine stability of a given system using Routh Hurwitz, Root locus, Bode analysis.

Module-1: Modeling of control systems	RBT	Hrs
Introduction to Control systems, types, and Classification of control systems. Mathematical modeling: Modeling of mechanical systems, electrical systems, and Analogous systems. DC Servomotors: modelling of armature-controlled and field-controlled servomotors. Transfer functions. Illustrative examples.	Apply	8
Module-2: Block Diagrams and Signal flow graphs	RBT	Hrs
 Block diagrams: Block diagram of a closed loop system, construction of block diagram of electrical networks, block diagram reduction algebra to find the overall transfer function. Illustrative examples. Signal flow graphs: Definitions, construction of signal flow graph for electrical networks, Block diagrams Masons gain formula to find the overall transfer function. Illustrative examples. 	Apply	8
Module-3: Time Domain Analysis	RBT	Hrs
Standard test signals, time response of second order systems, Time domain specifications, steady state errors and static error constants. Dynamic error constants, their importance. Illustrative examples	Apply	8
Module-4: Stability analysis using Root locus and Routh Hurwitz techniques	RBT	Hrs
Routh Stability criterion: Definitions of stability terms. BIBO stability, Necessary conditions for stability, Routh stability criterion difficulties in formulation of Routh table, applications of Routh stability criterion.Root locus technique: Introduction, root locus concepts, construction of root loci, rules for the construction of root locus. Stability analysis using Root locus techniques	Apply	8

Module-5: Stability analysis in the Frequency domain.	RBT	Hrs
Frequency domain specifications. Co-relation between time and frequency response – 2 nd order systems. Illustrative examples. Bode plots : Definitions of gain margin, phase margin. General procedure for constructing bode plots, computation of gain margin and phase margin, reverse bode plots. Illustrative examples.	Apply	8

Reference Books

- 1. A Anand Kumar, "Control systems", PHI learning private limited, New Delhi
- 2. Benjamin C Kuo, Farid Golnaraghi, "Automatic Control System", Wiley, 9th edn, 2010
- 3. Ashfaq Husain, Haroon Ashfaq, "Control Systems", Dhanpat Rai & Co., 1st edn, reprint 2017
- 4. M. Gopal, "Control Systems: Principles and Design", McH, 4th Edn, 2012
- 5. S. Salivahanan et.al, "Control System Engineering", Pearson, 1st Edn, 2015.
- 6. D.Ganesh Rao and K.Channavenkatesh. "Control Engineering", Publisher-Sanguine Technical
 - Publishers,2008.

B.N.M. Institute of Technology

Semester: IV			
Electrical Motors and Synchronous Mac	hines (PCI)		
Course Code: 22EEE143			
Teaching Hours/Week (L:T:P:J): (3:0:2:0)	CIE Marks: 50		
Credits: 4	SEE Marks: 50		
Hours: 40 Hours Theory+ 10 Lab Sessions	SEE Duration: 03 Hou	ırs	
Course Learning Objectives:			
To understand the working of DC Motors, Stepper motor, and synchronou	s machines		
✤ To understand the performance of DC motors and synchronous machines			
✤ To understand the characteristics, starting methods, speed control of DC M	Iotors and synchronous	motors	
✤ To understand the concept of parallel operation and voltage regulation of a	alternators		
Pre-Requisites:			
 Knowledge of Electromagnetic Induction 			
 Knowledge of three phase AC circuits 			
✤ KCL & KVL			
Course Outcomes: After the completion of the course the students will be ab	e to:		
 Explain the construction and working of DC Motors, Stepper motor, and s 	ynchronous machine		
Determine the performance parameters and characteristics of DC Motors and synchronous motor through load and no- load tests			and no-
• Explain the performance, starting methods and speed control of DC Moto	rs and synchronous moto	ors	
 Predetermine the voltage regulation of alternators by EMF, MMF, ZPF and slip test 			
 Explain the concept of parallel operation of alternators 			
Module-1: DC Motors RBT		RBT	Hrs
DC Motors: Construction and working principle, Back E.M.F and its signific	ance, Torque equation,		
Classification, Characteristics of shunt, series & compound motor, Losses in I	OC motors, power flow	Annly	0
diagram, efficiency, condition for maximum efficiency. Speed control of shunt	motor and series motor	Арріу	0
by armature and field control, Applications of motors. Illustrative examples			
Module-2: Starters and Testing of DC Motors		RBT	Hrs
Starters: need for starters, 3-point starter, starters for Series motors,			
Testing of DC Motors: performance curves of shunt and series DC motor		Annly	8
Direct load test, Swinburne's test, Hopkinson's test, Fields Test on dc series	machines, merits, and	трру	0
demerits of tests. Illustrative examples,			
Module-3: Stepper motor and Synchronous Generators		RBT	Hrs
Stepper motor - Construction, Principle of operation of Variable Reluctance (V	R), permanent magnet		
Synchronous Generators: Types of Construction principle of operation frequency of induced emf Apply			8
winding factors EME equation Armature reaction Synchronous reactance Equivalent circuit			0
Phasor diagram of non-salient type alternator Illustrative examples	.e, Equivalent circuit.		
Module-4. Voltage Regulation of Non-salient & Salient nole a	Iternators	RRT	Hrs
muunter, vonage regulation of non-salient & salient pole a	1111 Halvi 3	ND I	111.2

Voltage Regulation of Non-salient pole alternators: EMF, MMF, ZPF methods. Illustrative examples Salient pole alternators: Two reaction analysis, experimental determination of X_d and X_q by slip test, voltage regulation, phasor diagrams on load, Illustrative examples	Apply	8
Module-5: Parallel operation of alternators & Synchronous Motors	RBT	Hrs
 Parallel operation of alternators – Need, requirements for parallel operation, Methods of synchronization of 3-phase alternators, synchronizing current, power & torque, effect of increasing excitation, load sharing between two alternators, illustrative examples (on synchronizing power, torque & load sharing only) Synchronous Motor: Principle of operation, effect of load, effect of change in excitation on armature current and power factor (V and inverted V curves), equivalent circuit, phasor diagrams, power developed, power flow, hunting and its suppression, Methods of starting, Illustrative examples 	Apply	8
 Swinburne's Test and Speed control of DC shunt motor Load test on dc shunt motor to draw speed – torque and horse power – efficiency characteristics Fields Test on dc series machines. Retardation test on dc shunt motor. Regenerative test on dc shunt machines. Voltage regulation of an alternator by EMF, MMF and ZPF methods. Slip test – Measurement of direct and quadrature axis reactance and predetermination of regula synchronous machines. V & inverted V curves of synchronous motor Synchronization of alternator by dark lamp method OCC Characteristics of DC Shunt Generator and determination of its critical resistance 	ation of sali	ent pole

Reference Books

Electrical Machinery, J.B.Gupta, S K Kataria & Sons

Electric Machines, D P Kothari, I J Nagrath, TMH

Electrical Machines, Ashfaq Hussain, Dhanpat Rai & Co. Publications

Electrical Technology, B L Theraja and A K Theraja

Web links and Video Lectures:

https://nptel.ac.in/courses/108106071

https://archive.nptel.ac.in/courses/108/105/108105155/

https://nptel.ac.in/courses/108106072

https://archive.nptel.ac.in/courses/108/105/108105131/ https://archive.nptel.ac.in/courses/108/102/108102146/

B.N.M. Institute of Technology

Semester: IV		
Course Name: Power Electronic Devices and Circuits [PCI]		
Teaching Hours/Week (L:T:P:J): (3:0:2:0) CIA Marks	: 50	
Credits: 4 SEA Marks	s: 50	
Hours: 40 hours Theory + 10 Lab sessionsSEA Durat	ion: 03 Hours	
Course Learning Objectives:		
✤ To study the operation, steady state and switching characteristics of solid state switches and the	eir ratings.	
✤ To give an overview of applications power electronics, different types of power semiconductor of	levices, their sw	vitching
characteristics.		
 ✤ To analyze different types of Thyristors, their gate characteristics and gate control requirement 	s.	
 To understand the design, analysis techniques, performance parameters and characteristics of co 	ntrolled rectifie	ers, DC-
DC, DC -AC converters and Voltage controllers.		
✤ To analyze the block diagrams of Power electronic converters used in UPS, Laptop and Electric	c Traction syste	ems
Pre-requisite:		
 Working principle of Semiconductors devices Electrical & Electronic Circuit analysis 		
Course outcomes: At the end of the course the student will be able to		
 Demonstrate the steady state, switching characteristics, ratings, and operation of ideal and practice 	cal solid state s	witches
 Analyze the speed control of DC Motor and stepper motor 		
 Interpret the significance of gate drive, protection and isolation circuits 		
✤ Demonstrate the operation of single phase and three phase rectifiers and AC Voltage controllers	feeding R and I	RL loads
 Design Buck, Boost and Buck-boost switched mode regulators 		
Analyze the waveforms of single phase and three phase inverters using step mode and SPW.	M techniques a	and their
applications in home and Industrial appliances.		
Module-1: Introduction & Applications of Power Electronics RBT Hrs		
Introduction: Ideal and real switches, static performance and dynamic performance, Temperature		
rise-use of heat sink,		
Power Diodes: available rating, types of diode, Junction structure, packing, reverse recovery		
characteristics, effect of reverse recovery transient, Schottky diodes and snubber circuits	Understand	8
Applications of Power Electronics: Types of Power Electronic Converter Circuits and their		
applications, Peripheral Effects of Power Electronic Converters		
Module-2: BJT Family	RBT	Hrs
Power Bipolar Junction Transistors: Types, ratings, Junction structure, static characteristics,		
proportional drive, safe operating area, switching times, base drive circuit for power transistors,		
switching aid circuits	Understand	8
Power MOSFET and IGBT: types, comparison with BJT, Junction structure, Principleof operation,	Chucistanu	0
Dower MOSEET switching times switching oid circuits. Gate drive circuits for newer MOSEET		
IGBT Comparison with BIT and MOSEFT Junction Structure Principle of working Switching		
times. Gallium Nitride and Silicon Carbide power semiconductor switches.		
Module–3: Thyristors	RBT	Hrs
Thyristors: Junction structure, Packaging, circuit symbol, operating states of Thyristor, turn	Understand	8

on switching, two transistor Analogy (derivation for relationship between gate current and anode current), problem in Turn-off by reverse gate pulse, rate of rise of forward voltage, switching characteristics, Thyristor classification according to Switching times and Thyristor selection according to Converter types, Gate circuit requirement for Thyristor: Timing control and firing of Thyristors, Thyristor ratings and protection, Gate Turnoff Thyristors, Gate control circuit of GTO, TRIAC, Thyristor Firing Circuits, Unijunction Transistor.		
Module-4: Controlled Rectifiers & AC Voltage Controllers	RBT	Hrs
Controlled Rectifiers: Introduction, Single-Phase Full Converters feeding R and RL Load (Highly Inductive load), Three- Phase Full Converters feeding R load, Illustrative Examples. AC Voltage Controllers: Introduction, Single-Phase Full-Wave Controllers with Resistive Loads, Single-Phase Full-Wave Controllers with Inductive Loads, Illustrative Examples.	Apply	8
Module–5: Switched mode regulators & Inverters	RBT	Hrs
 Switched mode regulators: Elements of switching mode regulators, Buck Regulator, Boost Regulators, Buck-Boost Regulators (derivations for voltage gain, peakripple currents, peak ripple voltages, and problems) DC-AC converters: Introduction, principle of operation single phase full bridge Inverters feeding R load, Single phase inverter using SPWM technique, Three-phase bridge inverters for 180° conduction 	Apply	8

Sl.No	Experiments
1	Static Characteristics of SCR
2	Static Characteristics of MOSFET and IGBT
3	Characteristic of TRIAC
4	SCR turn on circuit using synchronized UJT relaxation oscillator
5	SCR digital triggering circuit for a single-phase controlled rectifier and ac voltage regulator
6	Single phase controlled full wave rectifier with R load and R –L load
7	AC voltage controller using TRIAC and DIAC combination connected to R and RL loads
8	Speed control of stepper motor
9	Speed control of a separately excited D.C. Motor using an IGBT or MOSFET chopper
10	Single-phase MOSFET/IGBT-based PWM inverter

Reference Books			
Power Electronics, Principles and applications	Joseph Vithayathil	Tata Mc Graw Hill Edition	Third reprint-2011 ISBN-13: 978-0-07-070239-4
Power Electronics: Circuits Devices and Applications	Mohammad H Rashid,	Pearson	4th Edition, 2014
Power Electronics: Converters, Applications and Design	Ned Mohan et al	Wiley	3rd Edition, 2014
Power Electronics	Daniel W Hart	McGraw Hill	1 st Edition, 2011
Power Electronics	M.S. Jamil Asghar	PHI	Fifth print ISBN-978-81-203-2396-4

B.N.M. Institute of Technology

	Semester: IV	
	Course Name: Simulation of Electrical & Electronic Cir	cuits [PBL]
	Course Code: 22EEE145	
Teachin	g Hours/Week (L:T:P:J): (0:0:2:2)	CIA: 50
Credits:	2	SEA: 50
Hours: 3	30	SEA Duration: 03 Hours
Course	objectives:	
♦ To u	se software package to simulate and understand the working of Electrical & Ele	ctronics circuits.
✤ To si	mulate and verify circuit theorems for AC and DC circuits.	
✤ To si	mulate and explore the behavior of the RLC circuit when excited by Sinusoidal	signal and Step input.
✤ To si	mulate and explore the Op-Amp linear applications.	
✤ To si	mulate and explore the Op-Amp non-linear applications.	
* To d	esign and build an application for a given requirement.	
Pre-req	aisites: Concept of Electrical Circuit Analysis & Analog Electronic Circuits usi	ng Op-Amp.
Course	Outcomes: At the end of the course the student will be able to:	
♦ Use s	oftware package for simulation of Electrical & Electronic Circuits.	
✤ Simu	late DC & AC Circuits to verify circuit theorems.	
Explo	ore the behavior of RLC circuit excited by sinusoidal and step input.	
* Desig	gn and simulate Op-Amp-based non-linear applications.	
✤ Desig	and simulate Op-Amp-based linear applications.	
Desig	and build a circuit for a given application	
Sl. No.	Experiments	
1	Verification of KCL & KVL for DC and AC Circuits	
2	Verification of Thevenin's theorem and Maximum Power Transfer Theorem	
2	Study the characteristics of series and parallel resonance for (i) Variable fre	quency (ii) Variableinductance and
3	(iii) Variable capacitance.	
4	Obtain time response of an RLC circuit due to step excitation	
_	Testing of (i) Diode clipping (Single/Double ended) circuits for peak clipping,	peak detection
5	(ii) Clamping circuits: positive clamping /negative clamping	
	Design & Verification of inverting and non-inverting amplifiers using Op-An	np for
6	(i) Time Response (ii) Frequency Response	
7	Design and verification of (i) Inverting Comparator (ii) Non-inverting Co	mparator & (iii) Window detector
	using Op-Amp	
8	Design and verification of (i) Inverting Schmit Trigger (ii) Non-inverting	Schmit Trigger using Op-Amp
9	Design & Verification of Square/Rectangular waveform Generatio	n using Op-Amp Astable Multi-
7	VIDIATOR	
10	Generate Pulse width Modulation (PWM) Signal using 555 Timer IC	
L		

Sl. No.	List of indicative Projects
1	Design, Simulation and Implementation of Variable Regulated power supply
2	Design, Simulation and Implementation of Overvoltage and undervoltage protection circuit
3	Design, Simulation and Implementation Solar Battery Charger Circuit
4	Simulation and Implementation LED Dimmer using PWM Technique
5	Simulation and Implementation of DC Motor Speed Controller Circuit Using PWM Technique
6	Design, Simulation and Implementation of PID controller for an application
7	Dark Activated 220V Automatic Evening Lamp using LDR & IC 555
8	Temperature Deviation Indicator Using OP-AMP 741
9	Over Heat Detector with Auto Cut-Off System using Op-Amp
10	Automatic Water Pump Switch ON-OFF Circuit with 555
Referen	nce Books
"Engine	eering Circuit Analysis," William H. Hayt, Jr. et all, McGraw Hill,8 th Edition
Op-amp	o and Linear Integrated Circuits, Ramakant A Gayakwad, PHI Learning Pvt. Ltd. New Delhi, 4th Edition

B.N.M. Institute of Technology

Semester: IV			
Course Name: Electronic Instrumentation and Measuremen Course Code: 22EEE146	ts		
Teaching Hours/Week (L:T:P:J): (2:0:00) CIA M	arks: 50		
edits: 2 SEA Marks: 50			
Iours: 25 SEA Duration: 03 Hours		5	
Course Learning Objectives:			
✤ To know the necessity of different measuring instruments and their design principle			
• To understand the working principle of different measuring instruments and technical solutions to handle different			
errors.			
 To understand the functional elements of instrumentation/measurement systems. 			
✤ To impart the basic concepts of digital instruments, oscilloscope and signal generators.			
◆ To illustrate the principle, design and working of transducers for the measurement of	f displacement, st	rain and	
temperature.			
Pre-requisite: Basic Principles of Electrical Engineering (Circuit Theory), Basic Digital and Analog Electronics			
 Apply their knowledge to measure electrical quantities using standard Electronic measuring instruments. Explain the principle and working of digital instruments, Recorders function generators and Analyzers Discuss the principle, construction and working of transducers for the measurement of displacement, strain and temperature. Explain the principle and working of Bio-Medical Instruments 			
Module–1: Digital Voltmeters, Digital Multimeters and Frequency Meters	RBT	Hrs	
Introduction, Ramp technique & ramp type DVM, Dual slope integrating type DVM, Successive approximation DVM, Resolution and sensitivity of digital meters. Digital multimeters, Digital frequency meter-Block Diagram and principle of operation	Understand	5	
Module–2: Recorders	RBT	Hrs	
Strip Chart Recorders and its applications, XY recorders, Magnetic Recorders, Frequency Modulation Recording, Digital data Recording	Understand	5	
Module–4: Signal Generation and Analysis	RBT	Hrs	
Pulse and Square wave generation, Function Generation, Wave Analyzers, Harmonic	Understand	5	
Distortion Analyzers, Spectrum Analyzers.			
Module-5: Transducers	RBT	Hrs	
Introduction to sensors & Transducers, Strain gauge, LVDT, Hall-effect transducers, Proximity sensor.	Understand	5	
Module-5: Bio-Medical Instrumentation	RBT	Hrs	
Biometrics, Bio-potential, Principle of operation of Electrocardiogram (ECG), electroencephalogram (EEG), Blood pressure and Blood flow measurement, Magnetic resonance Imaging (MRI), Computed Tomography Imaging (CT SCAN)	Understand	5	

Reference Books

- 1. Electronic Instruments and Measurement Techniques, Cooper, W.D. Halfrick, A.B. PHI Learning, New Delhi, latest edition
- 2. Electronic Instruments, H.S. Kalsi, Tata Mc-Graw hill.
- 3. Electrical and Electronic Measurements, Sawhney, A.K. Dhanpat Rai, New Delhi, latest edition
- 4. Electronic Instrumentation and Measurements, David, Bell, PHI New Delhi, latest edition

Web links and Video Lectures:

- 1. https://nptel.ac.in/courses/108105153
- 2. https://nptel.ac.in/courses/108105064
- 3. https://www.youtube.com/watch?v=As5kzxkyT24

BNM Institute of Technology					
Syllabus for Softskills-2					
Subject Name	Softskills-2 (Aptitude Quantitative & Logical)	Weekly Assessment Marks	10		
Subject Code	22SFT147	Internal Assessment Marks	60		
Number of Contact Hours/Week	3	Company Simulation Tests Marks	30		
Total Number of Contact Hours	36	Credits	1		
	Number System - Classification of Numbers, Multiple and factors, Divisibility Rules				
Module 1 (Quantitative Aptitude - 1)	HCF & LCM, Squares and Cubes.				
	Profit & Loss - Concepts of SP, CP, Profit, Loss, Gain or Loss %.				
	Profit & Loss - Marked Price & Discount problems, Successive Discount.				
	Percentages – Percent To Decimal Or Fraction Conversion, Inverse Case – Value From Percentage, relative Percentage				
	Averages - Understanding Averages & solving problems.				
	Ratios - Duplicate and Triplicate Ratio, Direct and Indirect variation				
Module 2 (Quantitative Aptitude - 2)	Proportion - Direct Indirect proportion and relation.				
	Simple Interest - Simple Interest, Basic Difference b/w both the Interests				
	Compound Interest - CI with a Fractional Rate, to find Instalments.				

	Speed Time & Distance - Important formulas, Relative Speed.			
	Speed Time & Distance - Understanding Units & Conversion of units			
	Time & Work - Introduction and Concept, Important Time and Work Formula, Work Done			
Module 3 (Quantitative Aptitude - 3)	Time & Work - Rate of Work, Time Taken, If a piece of work is done in x number of days			
	Data Interpretation - Bar Graph, Tabular Form, Line Chart, case let Form			
	Data Interpretation - Pie Chart, Radar/Web, and Missing Data Interpretation.			
	Probability – Understanding concepts and important formulas.			
	Probability – Understanding types of problems on probability			
Module 4 (Logical - 1)	Problems on Syllogisms			
	Problems on Assumptions			
	Logical Puzzles - K-level thinking			
	Logical Puzzles - Arithmetic Puzzles			
	Stick Puzzles			
	Series Completion - Basics of Next no, Missing no and Wrong no and problems on that.			
	Solving various types of Letter series and understanding different types.			
Module 5 (Logical - 2)	Problem on Ages - Understanding concepts and basic formula along with solving different types of problems.			
	Problem on Ages - Tips and Tricks to Solve Problems on Ages			

	Blood Relation - Generation Tree, Family Tree Problems.		
	Blood Relation - Statement Based Questions, Coded Blood Relation Question.		
	Coding & Decoding - Concept of EJOTY, Opposite Letter, Reversing thealphabets.		
	Coding & Decoding - Jumbling of Letter, Finding Codes of Derivatives.		
	Clocks – Understanding concepts and basic formula along with solving differenttypes of problems.		
	Calendar - Understanding concepts and basic formula along with solving different types of problems.Image Analysis - Paper cutting & Folding, Mirror & Water Image, Cubes and Dice, Analogy, Find the odd one out, Rule DetectionModule 6 (Logical - 3)Odd Man Out - Following certain patterns and groups.Identifying the errors/odd one in the group.		
Module 6 (Logical - 3)			
	Seating Arrangement - Linear and Circular seating Arrangements as well as problems of sitting around Square and Rectangular.		
	Distance & Direction - Distance and Displacement between any two points aswell as puzzles based on that, Concept of Shadows.		

B.N.M. Institute of Technology

An Autonomous Institution under VTU Department of Electrical and Electronics Engineering

Semester : IV			
Course Name: Internship-1/Innovative Project Lab			
Course Code: 22EEE148			
Teaching Hours/Week (L:T:P:J): (0:0:2:2)	CIA: 100		
Credits: 1	SEA: -		
Hours: 15	SEA Duration: -		
Course Objectives:			
 To encourage independent learning and innovative attitude of the students 			
✤ To inspire team working			
To expand Intellectual capacity, Credibility and Judgement.			

✤ To develop Interactive attitude, Communication skills, Time management & Presentation skills.

All the students registered to II year of BE shall have to undergo mandatory internship of 4 weeks during II semester or III semester vacation. Semester End Assessment will be conducted in IV semester and the prescribed credit will be included. Internship shall be considered as a head of passing and shall be considered for the award of degree.

Course Outcomes: At the end of the course the student will be able to:

- * Acquire practical experience in the field of the internship.
- * Apply skills learned during the internship to implement in future work.
- ✤ Execute the project in the field of internship.
- Develop oral and written communication skills.
- * work as an individual and team member with time constraints.