B.N.M. Institute of Technology

	An Autor	nomous Institution	under VTU		
		Semester: I/II			
	COURS	E: Applied Physics for	CSE stream		
Cours	se Code: 23PHC112/122	L:T:P:J: 2:2:2:0	CIA Marks: 50		
Credi	its:	4	SEA Marks: 50		
Hours		40 L &13 P	SEA Duration: 03	3 Hours	
Cours	se Learning Objectives: Th				
1	Understand and apply the o	concepts of Quantum M	echanics and its app	lications in	variou
	fields of engineering by g	gaining practical know	ledge to correlate w	with the the	oretica
	concepts.				
2	Demonstrate the engineer	ing applications of Pho	otonics (Lasers and	Optical Fib	res) b
	applying basic principles a	nd their realization thro	ough experimental a	pproach.	
3	Understand and apply elec	trical properties of Meta	als and Superconduc	tors using qu	uantur
	mechanical concepts by g		-		
	concepts.		C		
4	Understand the basic pro	perties of Nanomateri	als and explore the	eir applicat	ions i
	modern engineering fields	=			
	concepts.	<i>J 6</i> 7 6 1			
5	Understand and apply th	ne basic concepts of	Ouantum computin	ng in engi	neerin
	applications.	1		0 0	
	Module 1 – (Quantum Mechanics		RBT	Hrs
Pre-re	quisite: Particle nature of Li	ght radiations – Photo e	electric effect, Black		
•	Radiation Spectrum and Plan				
	ing Component: Need				
	esis of Matter Waves and				
Principle and its application (Non-existence of electrons inside nucleus). Wave Sunction, properties and its physical significance: probability density and Applying 08					
unction, properties and its physical significance: probability density and Applying 08 Normalization, Time independent one-dimensional Schrodinger equation					
	tion), time dependent (qualit		0 1		
	(Eigen values and Eigen fur				
-	ing (qualitative), Numerical	·			
Applic	cations to mention: Quantur	n Computers and Quan	tum entanglement.		
	Module	e 2 – Photonics		RBT	Hrs
D		tion and Enviroim De	flastian Definestian		

Pre-requisite: Concepts of Absorption and Emission, Reflection, Refraction and total Internal Reflection. Teaching Component: 2.1: LASER: Interaction of radiation with matter and characteristic properties of laser, Energy density of a photon at equilibrium in terms of Einstein's coefficients (derivation), Conditions for Laser action, Requisites of a Laser system, Construction and working of CO₂ Laser. Engineering Applications of Lasers: Holography in Data Storage – Recording using Wave front division technique and reconstruction of Holograms,

Numerical Problems. Applying **08** Applications to mention: LIDAR, Laser welding, drilling & cutting. 2.2: Optical fibers: Introduction to optical fibers, Propagation mechanism in optical fibers, Acceptance angle and Numerical Aperture (derivation), Types

of Optical fibers, Attenuation in optical fibers (no derivation) and its mechanisms, Engineering Applications of optical fibers – Point to point communication, Numerical problems.		
Applications to mention: Endoscopy, Broad band Internet connection.		
Module 3 – Electrical Properties of Materials	RBT	Hrs
 Pre-requisite: Free electron theory of metals, Ohm's Law in terms of current density. Teaching Component: 3.1 Metals: Quantum free electron theory – Assumptions, Density of states (qualitative), Fermi energy and Fermi factor, Effect of temperature on fermi factor, Expression for Fermi energy (derivation) at absolute zero temperature and at certain higher temperature (qualitative), effective mass (qualitative). Merits of quantum free electron theory, Numerical Problems. 3.2 Superconductors: Temperature dependence of resistivity in metals (Matthiessen's rule) and superconducting materials. Effect of magnetic field (Meissner effect). Critical magnetic field and its temperature dependence, Type-I and Type-II superconductors, BCS theory (qualitative). High-temperature superconductors (qualitative). Applications of superconductors – SQUID, Numerical problems. Applications to mention: Maglev vehicles, Superconducting magnets, Loss less power transmission, Nuclear Reactors. 		08
Module 4 – Modern Engineering Materials	RBT	Hrs
Teaching Component: 4.1 Nano Materials: Introduction to Nano science and Nano materials, Surface to volume ratio, Quantum confinement – Quantum well, Quantum wire, Quantum dot. Synthesis of Nano materials – Top-down approach (Ball milling method) and bottom-up approach (Sol gel method). Carbon Nano tubes - synthesis of CNTs using Arc Discharge Method, types, properties and Applications. Scanning Electron Microscope (SEM), Application of SEM in analysis of Molecular size, Numerical problems. 4.2 Composite Materials: Introduction to composite materials, Classification of composites based on reinforcement materials and matrix. Advantages and disadvantages of composite materials, Engineering Applications – MEMS (qualitative). Applications to mention: Targeted drug delivery system, Nanocomposites and Shape Memory Alloys (SMA).	Applying	08
Module 5 – Quantum Computing	RBT	Hrs
Teaching Component: Introduction to quantum computing- Matrix form of wave function, Identity Operator, Determination of $I 0>$ and $I 1>$, classical information and quantum information, Moore's law, Superposition in quantum computation, concept of Qubit, properties- mathematical representation, representation of qubit by Bloch sphere, Quantum Gates –Single qubit gates	Applying	08

(2 D	Lab Experiments (2 Demo + 8 Lab sessions + 1 Experimental Demo +1 Repetition class + 1 Lab Test)		
Sl. No	List of Experiments		
1	Determination of Planck's constant		
2	Verification of Stefan's law		
3	Determination of radius of curvature of a Plano convex lens using Newton's Rings		
4	Determination of wavelength of Laser using Diffraction		
5	Determination of Acceptance angle and Numerical Aperture of an Optical fiber		
6	Determination of Fermi energy of copper		
7	Determination of Resistivity of a metal		
8	Determination of size of a Nano particle using diffraction pattern		
9	Experimental demonstration on Magnetic levitation (Maglev Vehicle)		

Course Outcomes: After completing the course, the students will be able to			
23PHC112/122.1	Apply the concepts of Quantum Mechanics to physical situations and determine parameter related to the concepts.		
23PHC112/122.2	Apply principles of Photonics (Lasers and Optical Fibers) to determine optical parameters in the field of engineering.		
23PHC112/122.3	Apply the quantum concepts and determine parameters related to electrical properties materials.		
23PHC112/122.4	Apply the Concepts of Nano Science and determine parameters related to nano materials.		
23PHC112/122.5	Apply the principles of Quantum Mechanics and their applications in Quantum Computing.		

Reference Books

- Principle of Quantum Mechanics: Concepts & Applications, Nouredine Zettili, Wiley, 2nd Edition, 2009.
- Quantum Computation and Quantum Information, Michael A. Nielsen & Isaac L. Chuang, Cambridge Universities Press, 2010 Edition.
- 3. Lasers and Non-linear optics, B.B. Laud, New Age International Publishers, 3rd Edition, 2011.
- Lasers and Optical Instrumentation, S. Nagabhushana and B. Sathyanarayana, I.K. International Publishing House Pvt. Ltd, 2013.
- 5. Solid State Physics, S.O. Pillai, New Age International Publishers, 9th Edition, 2020.
- 6. Introduction to Nanoscience and Nanotechnology, Chris Binns, Wiley, 2010.
- An Introduction to Composite Materials, T.W. Clyne and D. Hull, Cambridge University Press, 3rd Edition, 2019.
- 8. University Practical Physics by D.C. Tayal, Edited by ILA Agarwal, 2000, Himalaya Publishing House, Mumbai.
- 9. Engineering Physics Laboratory Manual (BNMIT).

B.N.M. Institute of Technology An Autonomous Institution under VTU

Semester: I/II					
COURSE: Applied Physics					
	(for EC, EE & ME stream)				
Course Code: 23PHE112/122	L:T:P:J: 2:2:2:0	CIA Marks			
Credits: 4 SEA Mark					
Hours:	40 L &13 P		ion: 03 Hours	,	
Course Learning Objectives: Th			1.1.1	1	
	1 Understand and apply the concepts of Quantum Mechanics and their applications in				
various fields of enginee	ring by gaining practi	cal knowled	ge to correla	te with the	
theoretical concepts.		• ~-			
2 Demonstrate the engineeri			-	-	
applying basic principles a					
3 Understand and apply elect				-	
and Dielectrics by gaining				=	
4 Understand the basic pro	-	-			
modern engineering fields	by gaining practical kno	wledge to con	rrelate with the	e theoretical	
concepts.					
5 Understand and apply the		uctors in eng	ineering appli	cations and	
their realization through ex	xperimental approach.				
Module 1 – Quantum Mechanics			RBT	Hrs	
Teaching Component: Need for Quantum mechanics, de-Broglie's hypothesis of Matter Waves and their properties, Heisenberg Uncertainty Principle and its application (Non-existence of electrons inside nucleus). Wave function, properties and its physical significance: probability density and Normalization, Time independent one- dimensional Schrodinger equation (derivation), time dependent (qualitative), Particle in a potential well of infinite height (Eigen values and Eigen functions), Finite well potential and Quantum Tunneling (qualitative), Numerical problems. 08 Applications to mention: Quantum Computers and QuantumImage: Computer of the problem of				08	
entanglement.					
Module 2 – Photonics			RBT	Hrs	
 Pre-requisite: Concepts of Absorption and Emission, Reflection, Refraction & Total Internal Reflection. Teaching Component: 2.1: LASER: Interaction of radiation with matter and characteristic properties of laser, Energy density of a photon at equilibrium in terms of Einstein's coefficients (derivation), Conditions for Laser action, Requisites of a Laser system, Construction and working of CO₂ Laser. Engineering Applications of Lasers: Holography in Data storage – Recording using Wave front division technique and reconstruction of Holograms, Numerical Problems. Applications to mention: LIDAR, Laser welding, drilling &cutting. 			08		
2.2: Optical fibers: Introduction to optical fibers, Propagation mechanism in optical fibers, Acceptance angle and Numerical Aperture					

		[
(derivation), Types of Optical fibers, Attenuation in optical fibers (no		
derivation) and its mechanisms, Engineering Applications of optical		
fibers – Point to point communication, Numerical problems.		
Applications to mention: Endoscopy, Broad band Internet connection.		
Module 3 – Electrical properties of materials	RBT	Hrs
Pre-requisite: Free electron theory of metals, Ohm's Law in terms of		
current density. Teaching Component: 3.1 Metals: Quantum free		
electron theory – Assumptions, Density of states (qualitative), Fermi		
energy and Fermi factor, Effect of temperature on fermi factor,		
Expression for Fermi energy (derivation) at absolute zero temperature		
and at certain higher temperature (qualitative), effective mass		
(qualitative). Merits of quantum free electron theory, Numerical		
Problems.		
3.2 Dielectric Materials: Polarization and its types, Relation between	Applying	08
dielectric constant and polarization (qualitative). Internal field and		
expression for internal filed in solids for one- dimensional (derivation)		
and three-dimensional cases (qualitative). Clausius- Mossotti equation		
(derivation). Application of dielectrics in transformers. Numerical		
Problems.		
Applications to mention: Fabricating capacitors, Energy storage		
devices, Heat sink in PCB. Coolant in thermal plants, Sensors &		
Actuators.		
Module 4 – Modern Engineering Materials	RBT	Hrs
Teaching Component: 4.1 Nano Materials: Introduction to Nano		
science and Nano materials, Surface to volume ratio, Quantum		
confinement – Quantum well, Quantum wire, Quantum dot. Synthesis		
of Nano materials - Top-down approach (Ball milling method) and		
bottom-up approach (Sol gel method). Carbon Nano tubes - synthesis		
of CNTs using Arc Discharge Method, types, properties and		08
Applications. Scanning Electron Microscope (SEM), Application of		
SEM in analysis of Molecular size, Numerical problems.		
4.2 Composite Materials: Introduction to composite materials,		
Classification of composites based on reinforcement materials and		
matrix. Advantages and disadvantages of composite materials,		
Engineering Applications - MEMS (qualitative) Applications to mention: Targeted drug delivery system and		
Nanocomposites.		
Module 5 – Semiconductors and Semiconductor Devices	RBT	Hrs
Pre-requisite: Types of semiconductors. And P-n junction diode		
Teaching Component: 5.1 Semiconductors: Fermi energy and Fermi		
level, Fermi level in intrinsic semiconductors, Expression for		
concentration of electrons in conduction band & holes concentration in valance band (only mention the expression), Law of mass action,		
concentration of electrons in conduction band & holes concentration in	Applying	08
concentration of electrons in conduction band & holes concentration in valance band (only mention the expression), Law of mass action,	Applying	08
concentration of electrons in conduction band & holes concentration in valance band (only mention the expression), Law of mass action, Electrical conductivity of a semiconductor (derivation), Hall effect, Expression for Hall coefficient (derivation) and its application. 5.2	Applying	08
concentration of electrons in conduction band & holes concentration in valance band (only mention the expression), Law of mass action, Electrical conductivity of a semiconductor (derivation), Hall effect,	Applying	08
concentration of electrons in conduction band & holes concentration in valance band (only mention the expression), Law of mass action, Electrical conductivity of a semiconductor (derivation), Hall effect, Expression for Hall coefficient (derivation) and its application. 5.2 Semiconductor Devices: Photodiode and Power responsivity,	Applying	08

(2 D	Lab Experiments (2 Demo + 8 Lab sessions + 1 Experimental demo+ 1 Repetition class + 1 Lab Test)		
Sl. No	List of Experiments		
1	Determination of Planck's constant		
2	Determination of Radius of curvature of a Plano-convex lens using Newton's Rings		
3	Determination of wavelength of Laser using Diffraction		
4	Determination of Acceptance angle and Numerical Aperture of an Optical fiber		
5	Determination of Fermi energy of copper		
6	Determination of Dielectric constant by RC charging and discharging method		
7	Determination of Size of a Nano particle using diffraction pattern		
8	Photo Diode Characteristics		
9	Experimental demonstration on magnetic levitation (Maglev vehicle)		

Course Outcomes: After completing the course, the students will be able to				
23PHE112/122.1	Apply the concepts of Quantum Mechanics to physical situations and determine			
	parameter related to the concepts.			
23PHE112/122.2	Apply principles of Photonics (Lasers and Optical Fibers) to determine optical			
	parameters in the field of engineering.			
22DUE112/122 2	Apply the quantum concepts and determine parameters related to electrical			
23PHE112/122.3	properties materials.			
	Apply the Concepts of Nano Science to determine parameters related to nano			
23PHE112/122.4	materials.			
	Apply the concepts of Semiconductors to determine parameters related to			
23PHE112/122.5	engineering applications.			

Reference Books

- Principle of Quantum Mechanics: Concepts & Applications, Nouredine Zettili, Wiley, 2nd Edition, 2009.
- 2. Lasers and Non-linear optics, B.B. Laud, New Age International Publishers, 3rd Edition, 2011.
- Lasers and Optical Instrumentation, S. Nagabhushana and B. Sathyanarayana, I.K. International Publishing House Pvt. Ltd, 2013.
- 4. Solid State Physics, S.O. Pillai, New Age International Publishers, 9th Edition, 2020.
- 5. Introduction to Nanoscience and Nanotechnology, Chris Binns, Wiley, 2010.
- An Introduction to Composite Materials, T.W. Clyne and D. Hull, Cambridge University Press, 3rd Edition, 2019.
- 7. University Practical Physics by D.C. Tayal, Edited by ILA Agarwal, 2000, Himalaya Publishing House, Mumbai.
- 8. Engineering Physics Laboratory Manual (BNMIT).